Magnetic resonance imaging and optical microscopy are key technologies in the life sciences. For microbiological studies, especially of the inner workings of single cells, optical microscopy is normally used because it easily achieves resolution close to the optical wavelength. But in conventional microscopy, diffraction limits the resolution to about half the wavelength. Recently, it was shown that this limit can be partly overcome by nonlinear imaging techniques 1,2 , but there is still a barrier to reaching the molecular scale. In contrast, in magnetic resonance imaging the spatial resolution is not determined by diffraction; rather, it is limited by magnetic field sensitivity, and so can in principle go well below the optical wavelength. The sensitivity of magnetic resonance imaging has recently been improved enough to image single cells 3,4 , and magnetic resonance force microscopy 5 has succeeded in detecting single electrons 6 and small nuclear spin ensembles 7 . However, this technique currently requires cryogenic temperatures, which limit most potential biological applications 8 . Alternatively, single-electron spin states can be detected optically 9,10 , even at room temperature in some systems [11][12][13][14] . Here we show how magneto-optical spin detection can be used to determine the location of a spin associated with a single nitrogen-vacancy centre in diamond with nanometre resolution under ambient conditions. By placing these nitrogen-vacancy spins in functionalized diamond nanocrystals, biologically specific magnetofluorescent spin markers can be produced. Significantly, we show that this nanometre-scale resolution can be achieved without any probes located closer than typical cell dimensions. Furthermore, we demonstrate the use of a single diamond spin as a scanning probe magnetometer to map nanoscale magnetic field variations. The potential impact of single-spin imaging at room temperature is far-reaching. It could lead to the capability to probe biologically relevant spins in living cells.The nitrogen-vacancy centre in diamond is a unique solid state system that allows ultrasensitive and rapid detection of single electronic spin states under ambient conditions 12 . The nitrogen-vacancy defect is a naturally occurring impurity that is responsible for the pink colouration of diamond crystals when present in high concentration. It was demonstrated that this colour centre can be produced in diamond nanocrystals by electron irradiation. Fluorescing nitrogen-vacancy diamond nanocrystals can be used as markers for bioimaging applications 15 . Such markers have attracted widespread interest because of their unprecedented photostability and non-toxicity 16,17 . It was recognized recently that the magnetic properties of such fluorescent labels can in principle be used for novel microscopy 18,19 . Here we demonstrate the realization of a magneto-optic microscope using nitrogen-vacancy diamond as the magnetic fluorescent label that moreover does not bleach or blink. Figure 1c and d show the fluorescenc...
Nanoscale diamond has recently received considerable attention due to the various possible applications such as luminescence imaging, drug delivery, quantum engineering, surface coatings, seeding etc. For most of these fields a suitable surface termination and functionalization of the diamond materials are required. In this feature article we discuss recent achievements in the field of surface modification of nanoscale diamond including the establishment of a homogeneous initial surface termination, the covalent and non-covalent immobilization of different functional moieties as well as the subsequent grafting of larger (bio)molecules onto previously functionalized nanodiamond.
Nanoscale diamond particles have become an interesting material. Due to their inertness, small size and surface structure, they are well-suited for biological applications, such as labelling and drug delivery. Here we discuss the surface structure and functionalisation of diamond nanoparticles. Non-covalent as well as covalent grafting of bioactive moieties is possible, and first applications of fluorescent diamond nanoparticles are described.
Upon reduction of particle size to the nanometer range, one has to deal with the general issue of spontaneous agglomeration, which often obstructs postsynthesis modification of nanoparticle surfaces. A technique to cope with this phenomenon is required to realize a wide variety of applications using nanoparticles in solvents or as refined assemblies. In this article, we report on a new technique to facilitate surface chemistry of nanoparticles in a conventional glassware system. A beads-assisted sonication (BASD) process was examined to break up persistent agglomerates of nanodiamonds in two different reactions for simultaneous surface functionalization. The chosen reactions are the silanization with an acrylate-modified silane and the arylation using diazonium salts. The BASD process can be successfully applied even where the original material is not dispersible in the reaction solvent at all, as the formation of ever smaller, increasingly functionalized agglomerates is improving their solubility. We have confirmed that the presence of ceramic beads enables functionalization of each primary particle, while conventional magnetic stirring or beadless sonication can reach primary particles only when agglomeration is loose. Additionally, mechanical surface modification of nanodiamond was found to take place by BASD with high energy density, leading to sp(2)-hybridized surface patches on nanodiamond. This allowed for the efficient grafting of aryl groups to the surface of primary diamond nanoparticles. Stable, homogeneously functionalized nanodiamond particles in colloidal solution can be obtained by this method.
Nanodiamond materials have become broadly available. Their synthesis is usually carried out by explosion or shock wave methods. They exhibit a unique surface structure and can be functionalized in various ways. This opens a broad range of applications in composites, biological systems, electronics, and surface technology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.