The dynamics of rhythmic movement has both deterministic and stochastic features. We advocate a recently established analysis method that allows for an unbiased identification of both types of system components. The deterministic components are revealed in terms of drift coefficients and vector fields, while the stochastic components are assessed in terms of diffusion coefficients and ellipse fields. The general principles of the procedure and its application are explained and illustrated using simulated data from known dynamical systems. Subsequently, we exemplify the method's merits in extracting deterministic and stochastic aspects of various instances of rhythmic movement, including tapping, wrist cycling and forearm oscillations. In particular, it is shown how the extracted numerical forms can be analysed to gain insight into the dependence of dynamical properties on experimental conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.