Currently, the growth of material data from experiments and simulations is expanding beyond processable amounts. This makes the development of new data‐driven methods for the discovery of patterns among multiple lengthscales and time‐scales and structure‐property relationships essential. These data‐driven approaches show enormous promise within materials science. The following review covers machine learning (ML) applications for metallic material characterization. Many parameters associated with the processing and the structure of materials affect the properties and the performance of manufactured components. Thus, this study is an attempt to investigate the usefulness of ML methods for material property prediction. Material characteristics such as strength, toughness, hardness, brittleness, or ductility are relevant to categorize a material or component according to their quality. In industry, material tests like tensile tests, compression tests, or creep tests are often time consuming and expensive to perform. Therefore, the application of ML approaches is considered helpful for an easier generation of material property information. This study also gives an application of ML methods on small punch test (SPT) data for the determination of the property ultimate tensile strength for various materials. A strong correlation between SPT data and tensile test data was found which ultimately allows to replace more costly tests by simple and fast tests in combination with ML.
Impoliteness and incivility in online discussions have recently been discussed as relevant issues in communication science. However, automatically detecting these concepts with computational methods is challenging. In our study, we build and compare supervised classification models to predict impoliteness and incivility in online discussions on German media outlets on Facebook. Using a sample of 10,000 hand-coded user comments and a theory-grounded coding scheme, we develop classifiers on different feature sets including unigram and n-gram distributions as well as various dictionary-based features. Our findings show that impoliteness and incivility can be measured to a certain extent on the word level of a comment, but the models suffer from high misclassification rates, even if lexical resources are included. This is mainly because the classifiers cannot reveal subtle forms of incivility and because comment authors often use predictive words of incivility or impoliteness in non-offensive ways or in different contexts. Still, when applying the classifiers to a comparable set of comments, we find that the machine-coded categories and the hand-coded categories reveal similar patterns regarding the distribution of and the user reactions to uncivil/impolite comments. The findings of our study therefore provide new insights into the supervised machine learning approach to the detection of different forms of offensive language.
Systematic decision making in engineering requires appropriate models. In this article, we introduce a regression method for enhancing the predictive power of a model by exploiting expert knowledge in the form of shape constraints, or more specifically, monotonicity constraints. Incorporating such information is particularly useful when the available datasets are small or do not cover the entire input space, as is often the case in manufacturing applications. We set up the regression subject to the considered monotonicity constraints as a semi-infinite optimization problem, and propose an adaptive solution algorithm. The method is applicable in multiple dimensions and can be extended to more general shape constraints. It was tested and validated on two real-world manufacturing processes, namely, laser glass bending and press hardening of sheet metal. It was found that the resulting models both complied well with the expert’s monotonicity knowledge and predicted the training data accurately. The suggested approach led to lower root-mean-squared errors than comparative methods from the literature for the sparse datasets considered in this work.
Comment sections below news articles are public fora in which potentially everyone can engage in equal and fair discussions on political and social issues. Yet, empirical studies have reported that many comment sections are spaces of selective participation, discrimination, and verbal abuse. The current study complements these findings by analyzing gender-related differences in participation and incivility. It uses a sample of 303,342 user comments from 14 German news media Facebook pages. We compare participation rates of female and male users as well as associations between the users’ gender, the incivility of their comments, and the incivility of the adjacent replies. To determine the incivility of the comments, we developed a Supervised Machine Learning Model (classifier) using pre-trained word embeddings and word// frequency features. The findings show that, overall, women participate less than men. Comments written by female authors are more civil than comments written by male authors. Women’s comments do not receive more uncivil replies than men’s comments and women are not punished disproportionately for communicating uncivilly. These findings contribute to the discourse on gender-related differences in online comment sections and provide insights into the dynamics of online discussions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.