The Drosophila melanogaster genome contains 5 genes that code for soluble guanylyl cyclase subunits. Two of these genes code for subunits, Gycα-99B and Gycβ-100B, which form a conventional NO-sensitive guanylyl cyclase and the other three code for atypical subunits, Gyc-88E, Gyc-89Da and Gyc-89Db. The properties and distribution of Gyc-88E and Gyc-89Db have previously been described and here Gyc-89Da is described. Gyc-89Da only forms an active guanylyl cyclase when co-expressed with Gyc-88E. The three atypical subunits probably form two different heterodimers in vivo: Gyc-88E/89Da and Gyc-88E/89Db. Both of these heterodimers were slightly stimulated by NO donors and Gyc-88E/89Da showed a greater activation by Mn2+, with an increase in Vmax and a decrease in Km, compared to Gyc-88E/89Db. Both Gyc-88E/89Da and Gyc-88E/89Db were expressed in neurons in both the peripheral and central nervous system. Although all three heterodimeric soluble guanylyl cyclases in D. melanogaster can be activated by NO and inhibited by ODQ, the atypical enzymes can be distinguished from the conventional soluble guanylyl cyclase by their sensitivity to the NO-independent activators YC-1 and BAY 41-2272, which will only activate the conventional enzyme.Abbreviation:ORFopen reading frameUTRuntranslated region
SUMMARY
Insect ecdysis is a precisely coordinated series of behavioral and hormonal events that occur at the end of each molt. A great deal is known about the hormonal events that underlie this process, although less is known about the neuronal circuitry involved. In this study we identified two populations of neurons that are required for larval and adult ecdyses in the fruit fly, Drosophila melanogaster (Meigen). These neurons were identified by using the upstream region of two genes that code for atypical soluble guanylyl cyclases to drive tetanus toxin in the neurons that express these cyclases to block their synaptic activity. Expression of tetanus toxin in neurons that express Gyc-89Da blocked adult eclosion whereas expression of tetanus toxin in neurons that express Gyc-89Db prevented the initiation of the first larval ecdysis. Expression of tetanus toxin in the Gyc-89Da neurons also resulted in about 50% lethality just prior to pupariation; however, this was probably due to suffocation in the food as lethality was prevented by stopping the larvae from burrowing deep within the food. This result is consistent with our model that the atypical soluble guanylyl cyclases can act as molecular oxygen detectors. The expression pattern of these cyclases did not overlap with any of the neurons containing peptides known to regulate ecdysis and eclosion behaviors. By using the conditional expression of tetanus toxin we were also able to demonstrate that synaptic activity in the Gyc-89Da and Gyc-89Db neurons is required during early adult development for adult eclosion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.