During neuroinflammation, activated microglial cells migrate toward dying neurons, where they exacerbate local cell damage. The signaling molecules that trigger microglial cell migration are poorly understood. In this paper, we show that pathological overstimulation of neurons by glutamate plus carbachol dramatically increases the production of the endocannabinoid 2-arachidonylglycerol (2-AG) but only slightly increases the production of anandamide and does not affect the production of two putative endocannabinoids, homo-␥-linolenylethanolamide and docosatetraenylethanolamide. We further show that pathological stimulation of microglial cells with ATP also increases the production of 2-AG without affecting the amount of other endocannabinoids. Using a Boyden chamber assay, we provide evidence that 2-AG triggers microglial cell migration. This effect of 2-AG occurs through CB2 and abnormal-cannabidiolsensitive receptors, with subsequent activation of the extracellular signal-regulated kinase 1/2 signal transduction pathway. It is important to note that cannabinol and cannabidiol, two nonpsychotropic ingredients present in the marijuana plant, prevent the 2-AG-induced cell migration by antagonizing the CB2 and abnormal-cannabidiol-sensitive receptors, respectively. Finally, we show that microglial cells express CB2 receptors at the leading edge of lamellipodia, which is consistent with the involvement of microglial cells in cell migration. Our study identifies a cannabinoid signaling system regulating microglial cell migration. Because this signaling system is likely to be involved in recruiting microglial cells toward dying neurons, we propose that cannabinol and cannabidiol are promising nonpsychotropic therapeutics to prevent the recruitment of these cells at neuroinflammatory lesion sites.
Endocannabinoids are released after brain injury and believed to attenuate neuronal damage by binding to CB(1) receptors and protecting against excitotoxicity. Such excitotoxic brain lesions initially result in primary destruction of brain parenchyma, which attracts macrophages and microglia. These inflammatory cells release toxic cytokines and free radicals, resulting in secondary neuronal damage. In this study, we show that the endocannabinoid system is highly activated during CNS inflammation and that the endocannabinoid anandamide (AEA) protects neurons from inflammatory damage by CB(1/2) receptor-mediated rapid induction of mitogen-activated protein kinase phosphatase-1 (MKP-1) in microglial cells associated with histone H3 phoshorylation of the mkp-1 gene sequence. As a result, AEA-induced rapid MKP-1 expression switches off MAPK signal transduction in microglial cells activated by stimulation of pattern recognition receptors. The release of AEA in injured CNS tissue might therefore represent a new mechanism of neuro-immune communication during CNS injury, which controls and limits immune response after primary CNS damage.
FUS is an RNA‐binding protein involved in amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Cytoplasmic FUS‐containing aggregates are often associated with concomitant loss of nuclear FUS. Whether loss of nuclear FUS function, gain of a cytoplasmic function, or a combination of both lead to neurodegeneration remains elusive. To address this question, we generated knockin mice expressing mislocalized cytoplasmic FUS and complete FUS knockout mice. Both mouse models display similar perinatal lethality with respiratory insufficiency, reduced body weight and length, and largely similar alterations in gene expression and mRNA splicing patterns, indicating that mislocalized FUS results in loss of its normal function. However, FUS knockin mice, but not FUS knockout mice, display reduced motor neuron numbers at birth, associated with enhanced motor neuron apoptosis, which can be rescued by cell‐specific CRE‐mediated expression of wild‐type FUS within motor neurons. Together, our findings indicate that cytoplasmic FUS mislocalization not only leads to nuclear loss of function, but also triggers motor neuron death through a toxic gain of function within motor neurons.
Anandamide (arachidonylethanolamide) is an endocannabinoid that belongs to the acylethanolamide lipid family. It is produced by neurons in a calcium-dependent manner and acts through cannabinoid CB1 receptors. Other members of the acylethanolamide lipid family are also produced by neurons and act through G-protein-coupled receptors: homo-gamma-linolenylethanolamide (HEA) and docosatetraenylethanolamide (DEA) act through CB1 receptors, palmitylethanolamide (PEA) acts through CB2-like receptors, and oleylethanolamide (OEA) acts through receptors that have not yet been cloned. Although it is clear that anandamide and other acylethanolamides play a major role in neuronal signaling, whether astrocytes also produce these lipids is unknown. We developed a chemical ionization gas chromatography/mass spectrometry method that allows femtomole detection and quantification of anandamide and other acylethanolamides. Using this method, we unambiguously detected and quantified anandamide, HEA, DEA, PEA, and OEA in mouse astrocytes in culture. Stimulation of mouse astrocytes with ionomycin, a calcium ionophore, enhanced the production of anandamide, HEA, and DEA, whereas PEA and OEA levels were unchanged. Endothelin-1, a peptide known to act on astrocytes, enhanced the production of anandamide, without affecting the levels of other acylethanolamides. These results show that astrocytes produce anandamide, HEA, and DEA in a calcium-dependent manner and that anandamide biosynthesis can be selectively stimulated under physiologically relevant conditions. The relative levels of acylethanolamides in astrocytes from rat and human were different from the relative levels of acylethanolamides in mouse astrocytes, indicating that the production of these lipids differs between species. Because astrocytes are known to express CB1 receptors and inactivate endocannabinoids, our finding strongly suggests the existence of a functional endocannabinoid signaling system in these cells.
Amyotrophic lateral sclerosis (ALS) is a devastating progressive neurodegenerative disease affecting primarily the upper and lower motor neurons. A common feature of all ALS cases is a well-characterized neuroinflammatory reaction within the central nervous system (CNS). However, much less is known about the role of the peripheral immune system and its interplay with CNS resident immune cells in motor neuron degeneration. Here, we characterized peripheral monocytes in both temporal and spatial dimensions of ALS pathogenesis. We found the circulating monocytes to be deregulated in ALS regarding subtype constitution, function and gene expression. Moreover, we show that CNS infiltration of peripheral monocytes correlates with improved motor neuron survival in a genetic ALS mouse model. Furthermore, application of human immunoglobulins or fusion proteins containing only the human Fc, but not the Fab antibody fragment, increased CNS invasion of peripheral monocytes and delayed the disease onset. Our results underline the importance of peripheral monocytes in ALS pathogenesis and are in agreement with a protective role of monocytes in the early phase of the disease. The possibility to boost this beneficial function of peripheral monocytes by application of human immunoglobulins should be evaluated in clinical trials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.