Behavioral endophenotypes are determined by a multitude of counteracting but precisely balanced molecular and physiological mechanisms. In this study, we aim to identify potential novel molecular targets that contribute to the multigenic trait “anxiety”. We used microarrays to investigate the gene expression profiles of different brain regions within the limbic system of mice which were selectively bred for either high (HAB) or low (LAB) anxiety-related behavior, and also show signs of comorbid depression-like behavior.We identified and confirmed sex-independent differences in the basal expression of 13 candidate genes, using tissue from the entire brain, including coronin 7 (Coro7), cathepsin B (Ctsb), muscleblind-like 1 (Mbnl1), metallothionein 1 (Mt1), solute carrier family 25 member 17 (Slc25a17), tribbles homolog 2 (Trib2), zinc finger protein 672 (Zfp672), syntaxin 3 (Stx3), ATP-binding cassette, sub-family A member 2 (Abca2), ectonucleotide pyrophosphatase/phosphodiesterase 5 (Enpp5), high mobility group nucleosomal binding domain 3 (Hmgn3) and pyruvate dehydrogenase beta (Pdhb). Additionally, we confirmed brain region-specific differences in the expression of synaptotagmin 4 (Syt4).Our identification of about 90 polymorphisms in Ctsb suggested that this gene might play a critical role in shaping our mouse model's behavioral endophenotypes. Indeed, the assessment of anxiety-related and depression-like behaviors of Ctsb knock-out mice revealed an increase in depression-like behavior in females.Altogether, our results suggest that Ctsb has significant effects on emotionality, irrespective of the tested mouse strain, making it a promising target for future pharmacotherapy.
BackgroundPanic disorder with agoraphobia is characterized by panic attacks and anxiety in situations where escape might be difficult. However, neuroimaging studies specifically focusing on agoraphobia are rare. Here we used functional magnetic resonance imaging (fMRI) with disorder-specific stimuli to investigate the neural substrates of agoraphobia.MethodWe compared the neural activations of 72 patients suffering from panic disorder with agoraphobia with 72 matched healthy control subjects in a 3-T fMRI study. To isolate agoraphobia-specific alterations we tested the effects of the anticipation and perception of an agoraphobia-specific stimulus set. During fMRI, 48 agoraphobia-specific and 48 neutral pictures were randomly presented with and without anticipatory stimulus indicating the content of the subsequent pictures (Westphal paradigm).ResultsDuring the anticipation of agoraphobia-specific pictures, stronger activations were found in the bilateral ventral striatum and left insula in patients compared with controls. There were no group differences during the perception phase of agoraphobia-specific pictures.ConclusionsThis study revealed stronger region-specific activations in patients suffering from panic disorder with agoraphobia in anticipation of agoraphobia-specific stimuli. Patients seem to process these stimuli more intensively based on individual salience. Hyperactivation of the ventral striatum and insula when anticipating agoraphobia-specific situations might be a central neurofunctional correlate of agoraphobia. Knowledge about the neural correlates of anticipatory and perceptual processes regarding agoraphobic situations will help to optimize and evaluate treatments, such as exposure therapy, in patients with panic disorder and agoraphobia.
Sphingolipids and the derived gangliosides have critical functions in spermatogenesis, thus mutations in genes involved in sphingolipid biogenesis are often associated with male infertility. We have generated a transgenic mouse line carrying an insertion in the sphingomyelin synthase gene Sms1, the enzyme which generates sphingomyelin species in the Golgi apparatus. We describe the spermatogenesis defect of Sms1-/- mice, which is characterized by sloughing of spermatocytes and spermatids, causing progressive infertility of male homozygotes. Lipid profiling revealed a reduction in several long chain unsaturated phosphatidylcholins, lysophosphatidylcholins and sphingolipids in the testes of mutants. Multi-Spectral Optoacoustic Tomography indicated blood-testis barrier dysfunction. A supplementary diet of the essential omega-3 docosahexaenoic acid and eicosapentaenoic acid diminished germ cell sloughing from the seminiferous epithelium and restored spermatogenesis and fertility in 50% of previously infertile mutants. Our findings indicate that SMS1 has a wider than anticipated role in testis polyunsaturated fatty acid homeostasis and for male fertility.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.