Although considered to be generally safe, a number of beta-lactam antibiotics have been associated with epileptic seizures in humans. Furthermore, some beta-lactam antibiotics, including ceftriaxone, are used to evoke convulsions under experimental conditions. Recently it was demonstrated that ceftriaxone increased expression of the glutamate transporter (GLT1) and its biochemical and functional activity in the brain of rodents. GLT1 regulates extracellular concentrations of glutamate, an excitatory amino acid involved in the pathogenesis of seizures and epilepsy. Because of its rapid transfer of glutamate into neurons and adjacent glial cells, GLT1 diminishes glutamate toxicity. We investigated whether ceftriaxone (200 mg/kg body wt) administered intraperitoneally (ip) for 6 days could modify the convulsant effects of pentylenetetrazole (PTZ, 100 mg/kg ip) in inbred male BALBcAnNCR and C57 black (BL)/6 mice aged 4 and 12 weeks. Ceftriaxone pretreatment provided significant protective effects against PTZ-evoked generalized clonic convulsions (GCCs), generalized clonic-tonic convulsions (GCTCs), and convulsion-induced mortality during a period of 30 mins after PTZ administration. The incidence of GCCs, GCTCs, and death was statistically significantly lower for BALBcAnNCR mice of both ages, particularly younger mice. The latency time for each of the three parameters was significantly greater, with the exception of GCCs in adult mice. Protective effects of ceftriaxone were also noticed in adult C57BL/6 mice but not in prepubertal C57BL/6 mice. This is the first demonstration of anticonvulsant effects of ceftriaxone or any other beta-lactam antibiotic, which are not uniform across the mouse population. Our results provide new insight into the effects of ceftriaxone, which need further investigation.
Data about the role of nitric oxide (NO) in epileptogenesis are contradictory. It is found to exert both proconvulsant and anticonvulsant effects. In an attempt to elucidate the role of NO in seizures, male Wistar rats were treated intraperitoneally by pentylenetetrazol (PTZ) (60, 80, and 100 mg/kg) and by a nitric oxide synthase antagonist, N-omega-nitro-L-arginine-methyl-ester (L-NAME) (10, 40, and 70 mg/kg), applied before PTZ. The time to onset and incidence of forelimb dystonia (FLD), generalized clonic convulsions (GCC), clonic-tonic convulsions (CTC), and mortality were recorded. The most successful convulsive response and mortality prevention were found in PTZ (80 mg/kg)-treated groups, where L-NAME (70 mg/kg) decreased the incidence by 29, 50, 67 (p = 0.052), and 50%, respectively, and significantly prolonged the time to onset, except that for mortality. Unexpectedly, L-NAME (40 mg/kg) increased incidence of GCC and mortality by 16%, similar to L-NAME (10 mg/kg) in PTZ (60 mg/kg)-treated groups, where GCC, CTC, and mortality increased by 14, 14, and 28%, respectively. Convulsive latency was prolonged in some PTZ (100 mg/kg) + L-NAME (40 and 70 mg/kg)-treated groups. In the experimental model and protocol used, it is concluded that (1) the effects of NO are L-NAME- and PTZ-dose dependent; (2) clonic-tonic convulsions are more strongly influenced by NO than limbic, probably because of PTZ limbic structure overstimulation; (3) L-NAME decreases the incidence of CTC and prolongs FLD, GCC, and CTC times to onset, indicating that NO acts as a proconvulsant; and (3) increased GCC, CTC, and mortality that suggests an anticonvulsant effect of NO needs further investigation.
Aluminium may have an important role in the aetiology/pathogenesis/precipitation of Alzheimer's disease. Because green tea (Camellia sinensis L.) reportedly has health-promoting effects in the central nervous system, we evaluated the effects of green tea leaf extract (GTLE) on aluminium chloride (AlCl3 ) neurotoxicity in rats. All solutions were injected into the cornu ammonis region 1 hippocampal region. We measured the performance of active avoidance (AA) tasks, various enzyme activities and total glutathione content (TGC) in the forebrain cortex (FbC), striatum, basal forebrain (BFb), hippocampus, brain stem and cerebellum. AlCl3 markedly reduced AA performance and activities of cytochrome c oxidase (COX) and acetylcholinesterase (AChE) in all regions. It decreased TGC in the FbC, striatum, BFb, hippocampus, brain stem and cerebellum, and increased superoxide dismutase activity in the FbC, cerebellum and BFb. GTLE pretreatment completely reversed the damaging effects of AlCl3 on AA and superoxide dismutase activity, markedly corrected COX and AChE activities, and moderately improved TGC. GTLE alone increased COX and AChE activities in almost all regions. GTLE reduces AlCl3 neurotoxicity probably via antioxidative effects and improves mitochondrial and cholinergic synaptic functions through the actions of (-)-epigallocatechin gallate and (-)-epicatechin, compounds most abundantly found in GTLE. Our results suggest that green tea might be beneficial in Alzheimer's disease.
Decreased blood flow in the brain leads to a rapid increase in reactive oxygen species (ROS). NADPH oxidase (NOX) is an enzyme family that has the physiological function to produce ROS. NOX2 and NOX4 overexpression is associated with aggravated ischemic injury, while NOX2/4-deficient mice had reduced stroke size. Dysregulation of matrix metalloproteinases (MMPs) contributes to tissue damage. The active form of vitamin D3 expresses neuroprotective, immunomodulatory, and anti-inflammatory effects in the CNS. The present study examines the effects of the vitamin D3 pretreatment on the oxidative stress parameters and the expression of NOX subunits, MMP9, microglial marker Iba1, and vitamin D receptor (VDR), in the cortex and hippocampus of Mongolian gerbils subjected to ten minutes of global cerebral ischemia, followed by 24 hours of reperfusion. The ischemia/reperfusion procedure has induced oxidative stress, changes in the expression of NOX2 subunits and MMP9 in the brain, and increased MMP9 activity in the serum of experimental animals. Pretreatment with vitamin D3 was especially effective on NOX2 subunits, MMP9, and the level of malondialdehyde and superoxide anion. These results outline the significance of the NOX and MMP9 investigation in brain ischemia and the importance of adequate vitamin D supplementation in ameliorating the injury caused by I/R.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.