Subpixel classification (SPC) extracts meaningful information on land-cover classes from the mixed pixels. However, the major challenges for SPC are to obtain reliable soft reference data (RD), use apt input data, and achieve maximum accuracy. This article addresses these issues and applies the support vector machine (SVM) to retrieve the subpixel estimates of glacier facies (GF) using high radiometric-resolution Advanced Wide Field Sensor (AWiFS) data. Precise quantification of GF has fundamental importance in the glaciological research. Efficacy of the approach was first tested on the synthetic data followed by the input AWiFS and reference MultiSpectral Instrument data, including ancillary data. SPC of synthetic data resulted in overall accuracy (OA) of 95%, proving the merit of SVM. Classification accuracy is inversely related to the glacier's surface heterogeneity. Reducing the number of classes enhanced the OA by ∼18%. Source and timing of RD invariably controls the SPC accuracy. OA improved by ∼5% on addressing the issue of temporal gap between input and RD. ∼11% increase in OA with the inclusion of ancillary data confirmed their positive effect on the accuracy. Input and reference fractional area of GF were strongly correlated (r > 0.9) with each other substantiating the results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.