Malignant gliomas such as glioblastoma multiforme (GBM) present some of the greatest challenges in the management of cancer patients worldwide, despite notable recent achievements in oncology. Even with aggressive surgical resections using state-of-the-art preoperative and intraoperative neuroimaging, along with recent advances in radiotherapy and chemotherapy, the prognosis for GBM patients remains dismal: median survival after diagnosis is about 14 months. Established good prognostic factors are limited, but include young age, high Karnofsky Performance Status (KPS), high mini-mental status examination score, O6-methylguanine methyltransferase promoter methylation, and resection of > 98% of the tumor. Standard treatment includes resection, followed by concurrent chemotherapy and radiotherapy. GBM research is being conducted worldwide at a remarkable pace, with some of the more recent promising studies focused on identification of aberrant genetic events and signaling pathways, tumor stem cell identification and characterization, modulation of tumor immunological responses, combination therapies, and understanding of the rare long-term survivors. Past treatment strategies have failed for various reasons; however, newer strategies in trials today and on the horizon encourage optimism. To help illustrate 'where we have been' with this fatal disease and 'where we are going' with contemporary studies, we include in this review a detailed history of Phase III clinical trials for GBM, with a final emphasis on exciting new treatment strategies that offer hope for future GBM therapy.
Increased numbers of S100A4 + cells are associated with poor prognosis in patients who have cancer. Although the metastatic capabilities of S100A4 + cancer cells have been examined, the functional role of S100A4 + stromal cells in metastasis is largely unknown. To study the contribution of S100A4 + stromal cells in metastasis, we used transgenic mice that express viral thymidine kinase under control of the S100A4 promoter to specifically ablate S100A4 + stromal cells. Depletion of S100A4 + stromal cells significantly reduced metastatic colonization without affecting primary tumor growth. Multiple bone marrow transplantation studies demonstrated that these effects of S100A4 + stromal cells are attributable to local non-bone marrow-derived S100A4 + cells, which are likely fibroblasts in this setting. Reduction in metastasis due to the loss of S100A4 + fibroblasts correlated with a concomitant decrease in the expression of several ECM molecules and growth factors, particularly Tenascin-C and VEGF-A. The functional importance of stromal Tenascin-C and S100A4+ fibroblast-derived VEGF-A in metastasis was established by examining Tenascin-C null mice and transgenic mice expressing Cre recombinase under control of the S100A4 promoter crossed with mice carrying VEGF-A alleles flanked by loxP sites, which exhibited a significant decrease in metastatic colonization without effects on primary tumor growth. In particular, S100A4+ fibroblast-derived VEGF-A plays an important role in the establishment of an angiogenic microenvironment at the metastatic site to facilitate colonization, whereas stromal Tenascin-C may provide protection from apoptosis. Our study demonstrates a crucial role for local S100A4 + fibroblasts in providing the permissive "soil" for metastatic colonization, a challenging step in the metastatic cascade.stromal fibroblasts | metastasis-associated fibroblasts | tumor microenvironment | metastatic microenvironment A bout 90% of cancer deaths are attributable to systemic disease associated with metastasis (1). Among the steps involved in metastasis, the colonization step is considered the most challenging for an invading cancer cell (2). With metastatic disease as the leading cause of death among patients who have cancer (3), a greater need is emphasized for a better understanding of the metastatic process so as to identify efficacious cancer therapies. S100A4 (also known as CAPL, p9Ka, 42A, pEL98, mts1, metastasin, calvasculin, 18A2, or FSP1) is a member of the S100 calcium-binding family, which has a high prognostic significance for metastasis in patients with cancer (4). Several studies have demonstrated a correlation between increased numbers of S100A4 + cells and poor prognosis of patients for a variety of cancer types, including colorectal adenocarcinoma, non-small cell lung cancer, breast adenocarcinoma, gastric cancer, esophageal squamous carcinoma, bladder cancer, prostate adenocarcinoma, melanoma, and ovarian carcinoma. Although S100A4 + cells encompass a variety of cell types, including malignant c...
Spine surgery has experienced much technological innovation over the past several decades. The field has seen advancements in operative techniques, implants and biologics, and equipment such as computer-assisted navigation and surgical robotics. With the arrival of real-time image guidance and navigation capabilities along with the computing ability to process and reconstruct these data into an interactive three-dimensional spinal "map", so too have the applications of surgical robotic technology. While spinal robotics and navigation represent promising potential for improving modern spinal surgery, it remains paramount to demonstrate its superiority as compared to traditional techniques prior to assimilation of its use amongst surgeons.The applications for intraoperative navigation and image-guided robotics have expanded to surgical resection of spinal column and intradural tumors, revision procedures on arthrodesed spines, and deformity cases with distorted anatomy. Additionally, these platforms may mitigate much of the harmful radiation exposure in minimally invasive surgery to which the patient, surgeon, and ancillary operating room staff are subjected.Spine surgery relies upon meticulous fine motor skills to manipulate neural elements and a steady hand while doing so, often exploiting small working corridors utilizing exposures that minimize collateral damage. Additionally, the procedures may be long and arduous, predisposing the surgeon to both mental and physical fatigue. In light of these characteristics, spine surgery may actually be an ideal candidate for the integration of navigation and robotic-assisted procedures.With this paper, we aim to critically evaluate the current literature and explore the options available for intraoperative navigation and robotic-assisted spine surgery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.