Answer Set Programming (ASP) is a framework in artificial intelligence and knowledge representation for declarative modeling and problem solving. Modern ASP solvers focus on the computation or enumeration of answer sets. However, a variety of probabilistic applications in reasoning or logic programming require counting answer sets. While counting can be done by enumeration, simple enumeration becomes immediately infeasible if the number of solutions is high. On the other hand, approaches to exact counting are of high worst-case complexity. In fact, in propositional model counting, exact counting becomes impractical. In this work, we present a scalable approach to approximate counting for answer set programming. Our approach is based on systematically adding XOR constraints to ASP programs, which divide the search space. We prove that adding random XOR constraints partitions the answer sets of an ASP program. In practice, we use a Gaussian elimination-based approach by lifting ideas from SAT to ASP and integrating it into a state of the art ASP solver, which we call ApproxASP. Finally, our experimental evaluation shows the scalability of our approach over the existing ASP systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.