PennyLane is a Python 3 software framework for optimization and machine learning of quantum and hybrid quantumclassical computations. The library provides a unified architecture for near-term quantum computing devices, supporting both qubit and continuous-variable paradigms. PennyLane's core feature is the ability to compute gradients of variational quantum circuits in a way that is compatible with classical techniques such as backpropagation. PennyLane thus extends the automatic differentiation algorithms common in optimization and machine learning to include quantum and hybrid computations. A plugin system makes the framework compatible with any gate-based quantum simulator or hardware.We provide plugins for Strawberry Fields, Rigetti Forest, Qiskit, and ProjectQ, allowing PennyLane optimizations to be run on publicly accessible quantum devices provided by Rigetti and IBM Q. On the classical front, PennyLane interfaces with accelerated machine learning libraries such as TensorFlow, PyTorch, and autograd. PennyLane can be used for the optimization of variational quantum eigensolvers, quantum approximate optimization, quantum machine learning models, and many other applications.
Quantum Image Processing (QIP) is a recent highlight in the Quantum Computing field. All previous methods for representing the images as quantum states were defined using qubits. One Quantum Image Representation (QIR) method using qutrits is present in the literature. Inspired by the qubit methods and the higher state-space available for qutrits, multiple QIR methods using qutrits are defined.First, the ternary quantum gates required for the representations are described and then the implementation details for five qutrit-based QIR methods are given. All the methods have been simulated in software, and example circuits are provided.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.