Discovering the complexity of seed structure and function along with a number of vital processes such as seed growth and development, germination are important factors in unlocking the secrets of consistent crop yield.Fenugreek (Trigonella foenum-graecum L.), a multi-purpose annual, dryland-adapted, forage, legume crop is cultivated in different parts of the world with great potential for introduction under suitable agro-climatic zones in subSaharan Africa and Latin America. Fenugreek seed is used extensively for its medicinal, pharmaceutical and nutraceutical properties. It is effective in the treatment of diabetes, hyperglycaemia (thyroxine-induced type) and hypercholesterolemia. This review discusses seed physiological processes and several important biochemical seed constituent, e.g., steroidal sapogenins (diosgenin), polysaccharide fiber (galactomannan), amino acid (4-hydroxyisoleucine), etc, with important medicinal and pharmacological characteristics impacting human and animal health. However, there are noticeable differences in the quality of several phytochemicals found in fenugreek seed possibly due to variations in plant genotypes and agroclimatic conditions under which the crop is grown. Hence, it is important to note that for consistent seed yield and quality of fenugreek cultivars there is an urgent need for Communicated by A.
A novel small molecule (SM) with a low-band-gap based on acenaphthoquinoxaline was synthesized and characterized. It was soluble in polar solvents such as N,N-dimethylformamide and dimethylacetamide. SM showed broad absorption curves in both solution and thin films with a long-wavelength maximum at 642 nm. The thin film absorption onset was located at 783 nm, which corresponds to an optical band gap of 1.59 eV. SM was blended with PCBM to study the donor-acceptor interactions in the blended film morphology and the photovoltaic response of the bulk heterojunction (BHJ) devices. The cyclic voltammetry measurements of the materials revealed that the HOMO and LUMO levels of SM are well aligned with those of PCBM, allowing efficient photoinduced charge transfer and suitable open circuit voltage, leading to overall power conversion efficiencies (PCEs) of approximately 2.21 and 3.23% for devices with the as-cast and thermally annealed blended layer, respectively. The increase in the PCE with the thermally annealed blend is mainly attributed to the improvement in incident photon to current efficiency (IPCE) and short circuit photocurrent (J(sc)). Thermal annealing leads to an increase in both the crystallinity of the blend and hole mobility, which improves the PCE.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.