Desynchronization is a novel primitive for sensor networks: it implies that nodes perfectly interleave periodic events to occur in a round-robin schedule. This primitive can be used to evenly distribute sampling burden in a group of nodes, schedule sleep cycles, or organize a collision-free TDMA schedule for transmitting wireless messages. Here we present Desync, a biologically-inspired self-maintaining algorithm for desynchronization in a single-hop network. We present (1) theoretical results showing convergence, (2) experimental results on TinyOS-based Telos sensor motes, and (3) a Desync-based TDMA protocol. Desync-TDMA addresses two weaknesses of traditional TDMA: it does not require a global clock and it automatically adjusts to the number of participating nodes, so that bandwidth is always fully utilized. Experimental results show a reduction in message loss under high contention from approximately 58% to less than 1%, as well as a 25% increase in throughput over the default Telos MAC protocol.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.