This paper presents condition monitoring aspects of induction motor, its present status with possible mitigation schemes and future maintenance challenges. The induction motors constitute the major portion of motors in domestic and industrial applications. These motors experience different types of failures and faults associated with insulation, bearing, stator, rotor, and eccentricity. As a matter of fact, these faults may subsequently enhance the probability of failures unless proper introspection is not accomplished. In order to reduce the failure time and operating cost, early detection is indispensable which necessitates condition-based approach on contrary to scheduled maintenance. The condition monitoring is a strong candidate to address the diagnosis of machinery failure problems and unreliability. In this context, a comprehensive analysis is reported in the literature with a focus on different methodologies being addressed for such objective. Utmost efforts are made to comprehensively analyze in the reported literature in a sequential manner citing the advantage and limitations in this paper. The authors hopefully described and illustrated the associated problems with possible mitigation in the context of condition monitoring which would be immensely helpful for future researchers working in these aspects and the future roadmap would be clearly reflected.
Previous phrase-based approaches to Automatic Post-editing (APE) have shown that the dependency of MT errors from the source sentence can be exploited by jointly learning from source and target information. By integrating this notion in a neural approach to the problem, we present the multi-source neural machine translation (NMT) system submitted by FBK to the WMT 2017 APE shared task. Our system implements multi-source NMT in a weighted ensemble of 8 models. The n-best hypotheses produced by this ensemble are further re-ranked using features based on the edit distance between the original MT output and each APE hypothesis, as well as other statistical models (n-gram language model and operation sequence model). This solution resulted in the best system submission for this round of the APE shared task for both en-de and de-en language directions. For the former language direction, our primary submission improves over the MT baseline up to -4.9 TER and +7.6 BLEU points. For the latter, where the higher quality of the original MT output reduces the room for improvement, the gains are lower but still significant .
Abstract. The sheer ease with which abusive and hateful utterances can be made online -typically from the comfort of your home and the lack of any immediate negative repercussions -using today's digital communication technologies (especially social media), is responsible for their significant increase and global ubiquity. Natural Language Processing technologies can help in addressing the negative effects of this development. In this contribution we evaluate a set of classification algorithms on two types of user-generated online content (tweets and Wikipedia Talk comments) in two languages (English and German). The different sets of data we work on were classified towards aspects such as racism, sexism, hatespeech, aggression and personal attacks. While acknowledging issues with inter-annotator agreement for classification tasks using these labels, the focus of this paper is on classifying the data according to the annotated characteristics using several text classification algorithms. For some classification tasks we are able to reach f-scores of up to 81.58.
We describe our submissions for SemEval-2017 Task 8, Determining Rumour Veracity and Support for Rumours. The Digital Curation Technologies (DKT) Sasaki, 2016, 2015) team at the German Research Center for Artificial Intelligence (DFKI) participated in two subtasks: Subtask A (determining the stance of a message) and Subtask B (determining veracity of a message, closed variant). In both cases, our implementation consisted of a Multivariate Logistic Regression (Maximum Entropy) classifier coupled with hand-written patterns and rules (heuristics) applied in a post-process cascading fashion. We provide a detailed analysis of the system performance and report on variants of our systems that were not part of the official submission.
In this article we present a novel linguistically driven evaluation method and apply it to the main approaches of Machine Translation (Rule-based, Phrase-based, Neural) to gain insights into their strengths and weaknesses in much more detail than provided by current evaluation schemes. Translating between two languages requires substantial modelling of knowledge about the two languages, about translation, and about the world. Using English-German IT-domain translation as a case-study, we also enhance the Phrase-based system by exploiting parallel treebanks for syntax-aware phrase extraction and by interfacing with Linked Open Data (LOD) for extracting named entity translations in a post decoding framework.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.