Membrane fusion is one of the most important processes for the survival of eukaryotic cells and entry of enveloped viruses to the host cells. Lipid composition plays a crucial role in the process by modulating the organization and dynamics of the membrane, as well as the structure and conformation of membrane proteins. Phosphatidylethanolamine (PE), a lipid molecule with intrinsic negative curvature, promotes membrane fusion by stabilizing the non-lamellar intermediate structures in the fusion process. Conversely, oleic acid (OA), with intrinsic positive curvature, inhibits membrane fusion. The current study aimed to investigate polyethylene glycol-mediated lipid mixing, content mixing, content leakage, and depth-dependent membrane organization and dynamics, using arrays of steady-state and time-resolved fluorescence techniques, to determine the causative role of PE and OA in membrane fusion. The results demonstrated that the presence of 30 mol % PE in the membrane promotes membrane fusion through a mechanism that circumvents the classical stalk model. On the contrary, membranes containing OA showed reduced rate and extent of fusion, despite following the same mechanism. Collectively, our findings in terms of membrane organization and dynamics indicated a plausible role of PE and OA in membrane fusion.
Membrane fusion is an essential process for the survival of eukaryotes and the entry of enveloped viruses into host cells. A proper understanding of the mechanism of membrane fusion would provide us a handle to manipulate several biological pathways, and design efficient vaccines against emerging and re-emerging viral infections. Although fusion proteins take the central stage in catalyzing the process, role of lipid composition is also of paramount importance. Lipid composition modulates membrane organization and dynamics and impacts the lipid–protein (peptide) interaction. Moreover, the intrinsic curvature of lipids has strong impact on the formation of stalk and hemifusion diaphragm. Detection of transiently stable intermediates remains the bottleneck in the understanding of fusion mechanism. In order to circumvent this challenge, analytical methods can be employed to determine the kinetic parameters from ensemble average measurements of observables, such as lipid mixing, content mixing, and content leakage. The current review aims to present an analytical method that would aid our understanding of the fusion mechanism, provides a better insight into the role of lipid shape, and discusses the interplay of lipid and peptide in membrane fusion. Graphical Abstract
Membrane fusion is considered to be one of the crucial processes for the existence of eukaryotes and the entry of enveloped viruses into host cells. The fusion mechanism depends on the lipid composition of the membrane as well as the properties of fusion proteins or peptides. The gp41 fusion peptide from the human immunodeficiency virus (HIV) is known to catalyze membrane fusion by altering the physical properties of the membrane. Earlier, we demonstrated that a membrane containing 30 mol % phosphatidylethanolamine (PE) circumvents the classical stalk model because of its intrinsic negative curvature. In this work, we demonstrated how the gp41 fusion peptide influences the fusion mechanism of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC)/1,2-dioleoyl-sn-glycero-3-phos-pho¬ethanolamine (DOPE) (70/30 mol %) membranes. We further evaluated the effect of the same peptide on the mechanism of fusion for membranes containing 30 mol % PE and a fatty acid with an intrinsic positive curvature (oleic acid (OA)). Our results show that gp41 switches the fusion mechanism from a nonclassical to a classical stalk model when membranes contain OA, but fails to do so for DOPC/DOPE membranes. This could be due to the extreme influence of the intrinsic negative curvature of PE, which is partially downregulated in the presence of OA.
Membrane fusion is a common course in innumerable biological processes that helps in the survival of eukaryotes. Enveloped viruses utilize this process to enter the host cells. Generally, the membrane lipid compositions play an important role in membrane fusion by modulating the membrane’s physical properties and the behavior of membrane proteins in the cellular milieu. In this work, we have demonstrated the role of polyunsaturated fatty acids (PUFAs), such as eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids, on the organization, dynamics, and fusion of homogeneous and heterogeneous membranes. We have exploited arrays of steady-state and time-resolved fluorescence spectroscopic methods and polyethylene glycol-induced membrane fusion assay to elucidate the behavior of EPA and DHA on dioleoyl phosphatidylcholine (DOPC)/cholesterol (CH) homogeneous and DOPC/sphingomyelin/CH heterogeneous membranes. Our results suggest that EPA and DHA display differential effects on two different membranes. The effects of PUFAs in homogeneous membranes are majorly attributed to their flexible chain dynamics, whereas the ability of PUFA-induced cholesterol transfer from the lo to the ld phase rules their behavior in heterogeneous membranes. Overall, our results provide detailed information on the effect of PUFAs on homogeneous and heterogeneous membranes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.