For social robots to be brought more into widespread use in the fields of companionship, care taking and domestic help, they must be capable of demonstrating social intelligence. In order to be acceptable, they must exhibit socio-communicative skills. Classic approaches to program HRI from observed human-human interactions fails to capture the subtlety of multimodal interactions as well as the key structural differences between robots and humans. The former arises due to a difficulty in quantifying and coding multimodal behaviours, while the latter due to a difference of the degrees of liberty between a robot and a human. However, the notion of reverse engineering from multimodal HRI traces to learn the underlying behavioral blueprint of the robot given multimodal traces seems an option worth exploring. With this spirit, the entire HRI can be seen as a sequence of exchanges of speech acts between the robot and human, each act treated as an action, bearing in mind that the entire sequence is goal-driven. Thus, this entire interaction can be treated as a sequence of actions propelling the interaction from its initial to goal state, also known as a plan in the domain of AI planning. In the same domain, this action sequence that stems from plan execution can be represented as a trace. AI techniques, such as machine learning, can be used to learn behavioral models (also known as symbolic action models in AI), intended to be reusable for AI planning, from the aforementioned multimodal traces. This article reviews recent machine learning techniques for learning planning action models which can be applied to the field of HRI with the intent of rendering robots as socio-communicative.
No abstract
In order to be acceptable and able to “camouflage” into their physio-social context in the long run, robots need to be not just functional, but autonomously psycho-affective as well. This motivates a long term necessity of introducing behavioral autonomy in robots, so they can autonomously communicate with humans without the need of “wizard” intervention. This paper proposes a technique to learn robot speech models from human-robot dialog exchanges. It views the entire exchange in the Automated Planning (AP) paradigm, representing the dialog sequences (speech acts) in the form of action sequences that modify the state of the world upon execution, gradually propelling the state to a desired goal. We then exploit intra-action and inter-action dependencies, encoding them in the form of constraints. We attempt to satisfy these constraints using aweighted maximum satisfiability model known as MAX-SAT, and convert the solution into a speech model. This model could have many uses, such as planning of fresh dialogs. In this study, the learnt model is used to predict speech acts in the dialog sequences using the sequence labeling (predicting future acts based on previously seen ones) capabilities of the LSTM (Long Short Term Memory) class of recurrent neural networks. Encouraging empirical results demonstrate the utility of this learnt model and its long term potential to facilitate autonomous behavioral planning of robots, an aspect to be explored in future works.
This paper presents an approach to learn the agents' action model (action blueprints orchestrating transitions of the system state) from plan execution sequences. It does so by representing intra-action and inter-action dependencies in the form of a maximum satisfiability problem (MAX-SAT), and solving it with a MAX-SAT solver to reconstruct the underlying action model. Unlike previous MAX-SAT driven approaches, our chosen dependencies exploit the relationship between consecutive actions, rendering more accurately learnt models in the end.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.