It is critical for bacteria to recognize surface contact and to initiate physiological changes required for surface-associated lifestyles. Ubiquitous microbial appendages called pili are involved in sensing surfaces and mediating downstream behaviors, but the mechanism by which pili mediate surface sensing remains unclear. Here we visualized Caulobacter crescentus pili undergoing dynamic cycles of extension and retraction. These cycles ceased within seconds of surface contact, which coincided with synthesis of the adhesive holdfast required for attachment. Physically blocking pili imposed resistance to pilus retraction, which was sufficient to stimulate holdfast synthesis without surface contact. Thus, resistance to pilus retraction upon surface contact is used for surface sensing.
Editing bacterial genomes is an essential tool in research and synthetic biology applications. Here, we describe multiplex genome editing by natural transformation (MuGENT), a method for accelerated evolution based on the cotransformation of unlinked genetic markers in naturally competent microorganisms. We found that natural cotransformation allows scarless genome editing at unprecedented frequencies of ∼50%. Using DNA substrates with randomized nucleotides, we found no evidence for bias during natural cotransformation, indicating that this method can be used for directed evolution studies. Furthermore, we found that natural cotransformation is an effective method for multiplex genome editing. Because MuGENT does not require selection at edited loci in cis, output mutant pools are highly complex, and strains may have any number and combination of the multiplexed genome edits. We demonstrate the utility of this technique in metabolic and phenotypic engineering by optimizing natural transformation in Vibrio cholerae. This was accomplished by combinatorially editing the genome via gene deletions and promoter replacements and by tuning translation initiation of five genes involved in the process of natural competence and transformation. MuGENT allowed for the generation of a complex mutant pool in 1 wk and resulted in the selection of a genetically edited strain with a 30-fold improvement in natural transformation. We also demonstrate the efficacy of this technique in Streptococcus pneumoniae and highlight the potential for MuGENT to be used in multiplex genetic interaction analysis. Thus, MuGENT is a broadly applicable platform for accelerated evolution and genetic interaction studies in diverse naturally competent species.
Vibrio natriegens has recently emerged as an alternative to Escherichia coli for molecular biology and biotechnology, but low-efficiency genetic tools hamper its development. Here, we uncover how to induce natural competence in V. natriegens and describe methods for multiplex genome editing by natural transformation (MuGENT). MuGENT promotes integration of multiple genome edits at high-efficiency on unprecedented time scales. Also, this method allows for generating highly complex mutant populations, which can be exploited for metabolic engineering efforts. As a proof-of-concept, we attempted to enhance production of the value added chemical poly-β-hydroxybutyrate (PHB) in V. natriegens by targeting the expression of nine genes involved in PHB biosynthesis via MuGENT. Within 1 week, we isolated edited strains that produced ∼100 times more PHB than the parent isolate and ∼3.3 times more than a rationally designed strain. Thus, the methods described here should extend the utility of this species for diverse academic and industrial applications.
Streptococcus pneumoniae (the pneumococcus) is a major human pathogen and a leading cause of inflammatory infections such as pneumonia and otitis media. An important mechanism for host defense against S. pneumoniae is opsonophagocytic killing by neutrophils. To persist in the human host, the pneumococcus has developed strategies to evade opsonization and subsequent neutrophil-mediated killing. Utilizing a genomic approach, we identified NanA, the major pneumococcal neuraminidase, as a factor important for resistance to opsonophagocytic killing in ex vivo killing assays using human neutrophils. The effect of NanA was shown using both type 4 (TIGR4) and type 6A clinical isolates. NanA promotes this resistance by acting in conjunction with two other surface-associated exoglycosidases, BgaA, a -galactosidase, and StrH, an N-acetylglucosaminidase. Experiments using human serum showed that these exoglycosidases reduced deposition of complement component C3 on the pneumococcal surface, providing a mechanism for this resistance. Additionally, we have shown that antibodies in human serum do not contribute to this phenotype. These results demonstrate that deglycosylation of a human serum glycoconjugate(s) by the combined effects of NanA, BgaA, and StrH, is important for resistance to complement deposition and subsequent phagocytic killing of S. pneumoniae.
Vibrio cholerae is naturally competent when grown on chitin. It is known that expression of the major regulator of competence, TfoX, is controlled by chitin; however, the molecular mechanisms underlying this requirement for chitin have remained unclear. In the present study, we identify and characterize a membrane-bound transcriptional regulator that positively regulates the small RNA (sRNA) TfoR, which posttranscriptionally enhances tfoX translation. We show that this regulation of the tfoR promoter is direct by performing electrophoretic mobility shift assays and by heterologous expression of this system in Escherichia coli. This transcriptional regulator was recently identified independently and was named “TfoS” (S. Yamamoto et al., Mol. Microbiol., in press, doi:10.1111/mmi.12462). Using a constitutively active form of TfoS, we demonstrate that the activity of this regulator is sufficient to promote competence in V. cholerae in the absence of chitin. Also, TfoS contains a large periplasmic domain, which we hypothesized interacts with chitin to regulate TfoS activity. In the heterologous host E. coli, we demonstrate that chitin oligosaccharides are sufficient to activate TfoS activity at the tfoR promoter. Collectively, these data characterize TfoS as a novel chitin-sensing transcriptional regulator that represents the direct link between chitin and natural competence in V. cholerae.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.