Many advanced driver assistance systems (ADAS) are currently trying to utilise multi-sensor architectures, where the driver assistance algorithm receives data from a multitude of sensors. As mono-sensor systems cannot provide reliable and consistent readings under all circumstances because of errors and other limitations, fusing data from multiple sensors ensures that the environmental parameters are perceived correctly and reliably for most scenarios, thereby substantially improving the reliability of the multi-sensor-based automotive systems. This paper first highlights the significance of efficiently fusing data from multiple sensors in ADAS features. An emergency brake assist (EBA) system is showcased using multiple sensors, namely, a light detection and ranging (LiDAR) sensor and camera. The architectures of the proposed ‘centralised’ and ‘decentralised’ sensor fusion approaches for EBA are discussed along with their constituents, i.e., the detection algorithms, the fusion algorithm, and the tracking algorithm. The centralised and decentralised architectures are built and analytically compared, and the performance of these two fusion architectures for EBA are evaluated in terms of speed of execution, accuracy, and computational cost. While both fusion methods are seen to drive the EBA application at an acceptable frame rate (~20fps or higher) on an Intel i5-based Ubuntu system, it was concluded through the experiments and analytical comparisons that the decentralised fusion-driven EBA leads to higher accuracy; however, it has the downside of a higher computational cost. The centralised fusion-driven EBA yields comparatively less accurate results, but with the benefits of a higher frame rate and lesser computational cost.
Modern cars utilise Advanced Driver Assistance Systems (ADAS) in several ways. In ADAS, the use of multiple sensors to gauge the environment surrounding the ego-vehicle offers numerous advantages, as fusing information from more than one sensor helps to provide highly reliable and error-free data. The fused data is typically then fed to a tracker algorithm, which helps to reduce noise and compensate for situations when received sensor data is temporarily absent or spurious, or to counter the offhand false positives and negatives. The performances of these constituent algorithms vary vastly under different scenarios. In this paper, we focus on the variation in the performance of tracker algorithms in sensor fusion due to the alteration in external conditions in different scenarios, and on the methods for countering that variation. We introduce a sensor fusion architecture, where the tracking algorithm is spontaneously switched to achieve the utmost performance under all scenarios. By employing a Real-time Traffic Density Estimation (RTDE) technique, we may understand whether the ego-vehicle is currently in dense or sparse traffic conditions. A highly dense traffic (or congested traffic) condition would mean that external circumstances are non-linear; similarly, sparse traffic conditions would mean that the probability of linear external conditions would be higher. We also employ a Traffic Sign Recognition (TSR) algorithm, which is able to monitor for construction zones, junctions, schools, and pedestrian crossings, thereby identifying areas which have a high probability of spontaneous, on-road occurrences. Based on the results received from the RTDE and TSR algorithms, we construct a logic which switches the tracker of the fusion architecture between an Extended Kalman Filter (for linear external scenarios) and an Unscented Kalman Filter (for non-linear scenarios). This ensures that the fusion model always uses the tracker that is best suited for its current needs, thereby yielding consistent accuracy across multiple external scenarios, compared to the fusion models that employ a fixed single tracker.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.