The latest addition to the family of Coronaviruses, SARS-CoV-2, unleashed its wrath across the globe. The outbreak has been so rapid and widespread that even the most developed countries are still struggling with ways to contain the spread of the virus. The virus began spreading from Wuhan in China in December 2019 and has currently affected more than200 countries worldwide. Nanotechnology has huge potential for killing viruses as severe as HIV, herpes, human papilloma virus, and viruses of the respiratory tract, both inside as well as outside the host. Metal-nanoparticles can be employed for biosensing methodology of viruses/bacteria, along with the development of novel drugs and vaccines for COVID-19 and future pandemics. It is thus required for the nanoparticles to be synthesized quickly along with precise control over their size distribution. In this study, we propose a simple microfluidic-reactor-platform for in-situ metal-nanoparticle synthesis to be used against the pandemic for the development of preventive, diagnostic, and antiviral drug therapies. The device has been fabricated using a customized standard photolithography process using a simple and cost-effective setup. The confirmation on standard silver and gold metal nanoparticle formation in the microfluidic reactor platform was analysed using optical fiber spectrophotometer. This novel microfluidic platform provides the advantage of in-situ synthesis, flow parameter control and reduced agglomeration of nanoparticles over the bulk synthesis due to segregation of nucleation and growth stages inside a microchannel. The results are highly reproducible and hence scaling up of the nanoparticle production is possible without involving complex instrumentation.
A microfluidic device displaying multiple hydrodynamic effects was designed to separate suspended impurities (i.e. bacteria and similar length scale particles present in water in the suspension form) from water.
In recent decades, organ-on-chip devices have gained substantial interest as an alternative for studying the pathophysiological processes relevant to drug screening. Micropumps are being utilized to simulate the in vivo physiological fluid flow more realistically in these organ-on-chip devices. Micropumps play a crucial role in pumping, perfusion, and circulation of fluids in various microdevices such as on-chip PCR, DNA microarrays, miniature bioreactor cell separation, and lab-on-chip biosensing platforms. With the rapid growth in technology, efficient pumping for proper circulation of media and nutrients has become imperative. In this study, we have described the design and development of an open-source impedance micropump for continuous perfusion of nutrient medium in a liver-on-chip prototype. This micropump is controlled via an integrated microcontroller board, with an observed flow rate ranging from 0.2 to 2 mL/min. Google Sketchup 2020 and DLP 3D printing were used to fabricate small precise parts of the impedance micropump. The flow rate was measured to characterize the actuating performance of the micropump. The poly-dimethyl siloxane-based liver-onchip prototype has been fabricated using a soft photolithography procedure. Further, a study of continuous perfusion of culture medium through the liver-on-chip containing the Hepg2 cell line was successfully performed by integrating it with the impedance micropump. Hoechst staining and Alamar Blue observed cell viability to confirm the healthy cell growth inside the liver-on-chip microfluidic chip. The compactness of the overall setup allows it to fit in a Petri plate, eliminating chances of contamination while cell handling.
Background: Alzheimer's Disease (AD) is a neuron related brain disorder leading to reasoning and memory loss. There is no specific cure identified for AD. JNK3 (c-Jun N-terminal kinase /stress-activated protein kinase) are highly revealed within the central nervous system, particularly neurons, playing vital role in functioning of brain. JNK3 hyper phosphorylation is a very common conclusion in neurodegenerative diseases. JNK3 in turn hyper phosphorylates Amyloid Precursor Protein (APP) which leads to the formation of Amyloid β peptides (an inductive agent of Alzheimer's disease). Methods: Protein JNK-3 (PDB ID: 3KVX) was retrieved from protein data bank and later we docked a library of compounds against it. These were further validated by ADMET studies. Results: Thus, docking inhibitors of JNK3 may provide a promising sanitive approach. Based on best docking score and glide score a potential lead is identified against JNK3. Conclusion: Inhibiting JNK-3 may lead to less production of amyloidβ peptides, thus reducing the risk of Alzheimer's disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.