One of the brightest X-ray pulsars in the Small Magellanic Cloud is SMC X-2. During its most recent major outburst in 2015, this transient pulsar displayed significant changes in both its accretion state and magnetosphere, particularly when it entered the low-luminosity regime of subcritical accretion. Polestar is a pulse-profile modeling code that helps in delineating the geometry of the emission as the source evolves past outburst and toward lower-luminosity states. Applying Polestar to XMM-Newton and NuSTAR pulse profiles, we constrained the most likely inclination of the spin axis of the pulsar to be i = 87° ± 4°. As the X-ray luminosity declined, an increase in the pulsed fraction was detected from Swift observations, which suggests a transition from fan- to pencil-beam emission during the later stages of the outburst. Additionally, we also performed analysis of the OGLE IV light curves, which showed strong modulation in the optical profiles during the outburst.
SXP 1062 is a long-period X-ray pulsar (XRP) with a Be optical companion located in the Small Magellanic Cloud. First discovered in 2010 from XMM–Newton data, it has been the target of multiple observational campaigns due to the seeming incongruity between its long spin period and recent birth. In our continuing modelling efforts to determine the inclination angle (i) and magnetic axis angle (θ) of XRPs, we have fitted 19 pulse profiles from SXP 1062 with our pulsar model, Polestar, including three consecutive Chandra observations taken during the trailing end of a Type I outburst. These fittings have resulted in most likely values of i = 76○ ± 2○ and θ = 40○ ± 9○. SXP 1062 mostly displays a stable double-peaked pulse profile with the peaks separated by roughly a third of a phase, but recently the pulsar has spun up and widened to a spacing of roughly half of a phase, yet the Polestar fits for i and θ remain constant. Additionally, we note a possible correlation between the X-ray luminosity and the separation of the peaks in the pulse profiles corresponding to the highest luminosity states.
SXP 15.3 and SXP 305 are two Be X-ray binaries in the Small Magellanic Cloud that are spatially separated by ∼7 arcsec. The small separation between these sources has, in the past, resulted in confusion about the origin of the emission from the combined region. We present long-term optical and X-ray monitoring results of both sources, where we study the historic and recent behaviour. In particular, from data collected as part of the S-CUBED project we see repeating X-ray outbursts from the combined region of the two sources in the recent lightcurve from the Neil Gehrels Swift Observatory, and we investigate the origin of this emission. Using the Hα emission line from the Southern African Large Telescope (SALT) and photometric flux from the Optical Gravitational Lensing Experiment (OGLE) to study the changes in the size and structure of the Be disc, we demonstrate that the X-ray emission likely originates from SXP 15.3. Timing analysis reveals unusual behaviour, where the optical outburst profile shows modulation at approximately twice the frequency of the X-ray outbursts. We consider either of these periodicities being the true orbital period in SXP 15.3 and propose models based on the geometric orientations of the Be disc and neutron star to explain the physical origin of the outbursts.
We carry out a meta-analysis of ultraluminous X-ray (ULX) sources that show large variabilities (by factors of >10) between their highest and lowest emission states in the X-ray energy range of 0.3–10 keV. We are guided by a recent stringent compilation of 25 such X-ray sources by Song et al. We examine the relation of logN versus logSmax, where N is the number of sources radiating above the maximum-flux level Smax. We find a strong deviation from all previously determined slopes in various high-mass X-ray binary (HMXB) samples. In fact, the ULX data clearly show a slope of −0.91. Thus, ULX sources do not appear to be uniform and isotropic in our Universe. We compare the ULX results against the local X-ray luminosity function of HMXBs in the Small Magellanic Cloud (SMC) constructed from our latest library that includes 41 Chandra 0.3–8 keV sources and 56 XMM-Newton 0.2–12 keV sources. The ULX data are not drawn from the same continuous distribution as the SMC data (the ULX data peak at the low tails of the SMC distributions), and none of our data sets is drawn from a normal distribution or from a log-normal distribution (they all show marked excesses at both tails). At a significance level of α=0.05 (2σ), the two-sample p-value of the Kolmogorov–Smirnov (KS) test gives p=4.7×10−3<α for the ULX versus the small Chandra sample and p=1.1×10−5<<α for the ULX versus the larger XMM-Newton sample, respectively. This adds to the evidence that ULX sources are not simply the higher end of the known local Be/X-ray pulsar distribution, but they represent a class of X-ray sources different from the young sources found in the SMC and in individual starburst galaxies. On the other hand, our two main SMC data sets are found to be statistically consistent, as they are drawn from the same continuous parent distribution (null hypothesis H0): at the α=0.05 significance level, the two-sample KS test shows an asymptotic p-value of 0.308>α, which tells us to accept H0.
IC 10 X-1 is an eclipsing high-mass X-ray binary containing a stellar-mass black hole (BH) and a Wolf–Rayet (WR) donor star with an orbital period of P = 34.9 hr. This binary belongs to a group of systems that can be the progenitors of gravitational-wave sources; hence understanding the dynamics of systems such as IC 10 X-1 is of paramount importance. The prominent He ii 4686 emission line (previously used in mass estimates of the BH) is out of phase with the X-ray eclipse, suggesting that this line originates somewhere in the ionized wind of the WR star or in the accretion disk. We obtained 52 spectra from the GEMINI/GMOS archive, observed between 2001 and 2019. We analyzed the spectra both individually, and after binning them by orbital phase to improve the signal-to-noise ratio. The radial-velocity curve from the stacked data is similar to historical results, indicating the overall parameters of the binary have remained constant. However, the He ii line profile shows a correlation with the X-ray hardness-ratio values; also, we report a pronounced skewness of the line profile, and the skewness varies with orbital phase. These results support a paradigm wherein the He ii line tracks structures in the stellar wind that are produced by interactions with the BH’s ionizing radiation and the accretion flow. We compare the observable signatures of two alternative hypotheses proposed in the literature: wind irradiation plus shadowing, and accretion disk hotspot; and we explore how the line-profile variations fit into each of these models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.