Purpose This study introduces a novel surface-topographic scanning system capable of automatically generating a suite of objective measurements to characterize torso shape. Research Question: what is the reliability of the proposed system for measurement of trunk alignment parameters in patients with adolescent idiopathic scoliosis (AIS) and controls? Methods Forty-six adolescents (26 with AIS and 20 controls) were recruited for a prospective reliability study. A series of angular, volumetric, and area measures were computed from topographic scans in each of three clinically relevant poses using a fully automated processing pipeline. Intraclass correlation coefficients (ICC(2,1)) were computed within (intra-) and between (inter-) raters. Measurements were also performed on a torso phantom. Results Topographic measurements computed on a phantom were highly accurate (mean RMS error 1.7%) compared with CT. For human subjects, intra- and inter-rater reliability were both high (average ICC > 0.90) with intrinsic (pose-independent) measurements having near-perfect reliability (average ICC > 0.98). Conclusion The proposed system is a suitable tool for topographic analysis of AIS; topographic measurements offer an objective description of torso shape that may complement other imaging modalities. Further research is needed to compare topographic findings with gold standard imaging of spinal alignment, e.g., standing radiography. Conclusion: clinical parameters can be reliably measured in a fully automated system, paving the way for objective analysis of symmetry, body shape pre/post-surgery, and tracking of pathology without ionizing radiation.
Axial twisting of the spine has been previously shown to be affected by scoliosis with decreased motion and asymmetric twisting. Existing methods for evaluating twisting may be cumbersome, unreliable, or require radiation exposure. In this study, we present an automated surface topographic measurement tool to evaluate global axial rotation of the spine, along with two measurements: twisting range of motion (TROM) and twisting asymmetry index (TASI). The aim of this study is to evaluate the impact of scoliosis on axial range of motion. Adolescent idiopathic scoliosis (AIS) patients and asymptomatic controls were scanned in a topographic scanner while twisting maximally to the left and right. TROM was significantly lower for AIS patients compared to control patients (69.1° vs. 78.5°, p = 0.020). TASI was significantly higher for AIS patients compared to control patients (29.6 vs. 19.8, p = 0.023). After stratifying by scoliosis severity, both TROM and TASI were significantly different only between control and severe scoliosis patients (Cobb angle > 40°). AIS patients were then divided by their major curve region (thoracic, thoracolumbar, or lumbar). ANOVA and post hoc tests showed that only TROM is significantly different between thoracic AIS patients and control patients. Thus, we demonstrate that surface topographic scanning can be used to evaluate twisting in AIS patients.
Background: Adolescent idiopathic scoliosis results in three dimensional changes to a patient’s body, which may change a patient’s range of motion. Surface topography is an emerging technology to evaluate three dimensional parameters in patients with scoliosis. The goal of this paper is to introduce novel and reliable surface topographic measurements for the assessment of global coronal and sagittal range of motion of the spine in adolescents, and to determine if these measurements can distinguish between adolescents with lumbar scoliosis and those without scoliosis. Methods: This study is a retrospective cohort study of a prospectively collected registry. Using a surface topographic scanner, a finger to floor and lateral bending scans were performed on each subject. Inter- and intra-rater reliabilities were assessed for each measurement. ANOVA analysis was used to test comparative hypotheses. Results: Inter-rater reliability for lateral bending fingertip asymmetry (LBFA) and lateral bending acromia asymmetry (LBAA) displayed poor reliability, while the coronal angle asymmetry (CAA), coronal angle range of motion (CAR), forward bending finger to floor (FBFF), forward bending acromia to floor (FBAF), sagittal angle (SA), and sagittal angle normalized (SAN) demonstrated good to excellent reliability. There was a significant difference between controls and lumbar scoliosis patients for LBFA, LBAA, CAA and FBAF (p-values < 0.01). Conclusion: Surface topography yields a reliable and rapid process for measuring global spine range of motion in the coronal and sagittal planes. Using these tools, there was a significant difference in measurements between patients with lumbar scoliosis and controls. In the future, we hope to be able to assess and predict perioperative spinal mobility changes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.