Background and Aim-Chronic inflammation is a risk factor for colon cancer in patients with ulcerative colitis (UC). The molecular mechanisms linking inflammation and colon carcinogenesis are incompletely understood. We tested the hypothesis that TLR4 is involved in tumorigenesis in the setting of chronic inflammation.
Background-We have recently demonstrated that mice deficient in TLR4 or its adapter molecule MyD88 have increased signs of colitis compared to wild-type (WT) mice following dextran sodium sulfate (DSS)-induced injury. We wished to test the hypothesis that Cox-2 derived PGE 2 is important in TLR4-related mucosal repair.
Abnormal T cell responses to commensal bacteria are involved in the pathogenesis of inflammatory bowel disease. MyD88 is an essential signal transducer for TLRs in response to the microflora. We hypothesized that TLR signaling via MyD88 was important for effector T cell responses in the intestine. TLR expression on murine T cells was examined by flow cytometry. CD4+CD45Rbhigh T cells and/or CD4+CD45RblowCD25+ regulatory T cells were isolated and adoptively transferred to RAG1−/− mice. Colitis was assessed by changes in body weight and histology score. Cytokine production was assessed by ELISA. In vitro proliferation of T cells was assessed by [3H]thymidine assay. In vivo proliferation of T cells was assessed by BrdU and CFSE labeling. CD4+CD45Rbhigh T cells expressed TLR2, TLR4, TLR9, and TLR3, and TLR ligands could act as costimulatory molecules. MyD88−/− CD4+ T cells showed decreased proliferation compared with WT CD4+ T cells both in vivo and in vitro. CD4+CD45Rbhigh T cells from MyD88−/− mice did not induce wasting disease when transferred into RAG1−/− recipients. Lamina propria CD4+ T cell expression of IL-2 and IL-17 and colonic expression of IL-6 and IL-23 were significantly lower in mice receiving MyD88−/− cells than mice receiving WT cells. In vitro, MyD88−/− T cells were blunted in their ability to secrete IL-17 but not IFN-γ. Absence of MyD88 in CD4+CD45Rbhigh cells results in defective T cell function, especially Th17 differentiation. These results suggest a role for TLR signaling by T cells in the development of inflammatory bowel disease.
Dysregulated innate immune responses to commensal bacteria contribute to the development of inflammatory bowel disease (IBD). TLR4 is overexpressed in the intestinal mucosa of IBD patients and may contribute to uncontrolled inflammation. However, TLR4 is also an important mediator of intestinal repair. The aim of this study is to examine the effect of a TLR4 antagonist on inflammation and intestinal repair in two murine models of IBD. Colitis was induced in C57BL/6J mice with dextran sodium sulfate (DSS) or by transferring CD45Rb(hi) T cells into RAG1-/- mice. An antibody (Ab) against the TLR4/MD-2 complex or isotype control Ab was administered intraperitoneally during DSS treatment, recovery from DSS colitis, or induction of colitis in RAG1-/- mice. Colitis severity was assessed by disease activity index (DAI) and histology. The effect of the Ab on the inflammatory infiltrate was determined by cell isolation and immunohistochemistry. Mucosal expression of inflammatory mediators was analyzed by real-time PCR and ELISA. Blocking TLR4 at the beginning of DSS administration delayed the development of colitis with significantly lower DAI scores. Anti-TLR4 Ab treatment decreased macrophage and dendritic cell infiltrate and reduced mucosal expression of CCL2, CCL20, TNF-alpha, and IL-6. Anti-TLR4 Ab treatment during recovery from DSS colitis resulted in defective mucosal healing with lower expression of COX-2, PGE(2), and amphiregulin. In contrast, TLR4 blockade had minimal efficacy in ameliorating inflammation in the adoptive transfer model of chronic colitis. Our findings suggest that anti-TLR4 therapy may decrease inflammation in IBD but may also interfere with colonic mucosal healing.
Patients with ulcerative colitis are at increased risk for developing colorectal cancer. We have shown that TLR4 is over-expressed in human colitis-associated cancer (CAC) and that mice deficient in TLR4 are markedly protected against colitis-associated neoplasia. We wished to elucidate the specific contributions of TLR4 signaling by myeloid cells and colonic epithelial cells (CEC) in colitis-associated tumorigenesis. TLR4-deficient mice or wild-type littermates (WT) were transplanted with bone marrow (BM) cells: TLR4-/-BM→WT mice (TLR4-expressing CEC) and WT BM→TLR4-/-mice (TLR4-expressing myeloid cells). Colitis-associated neoplasia was induced by azoxymethane (AOM 7.3mg/kg) injection and two cycles of dextran sodium sulfate (DSS) treatment. The number and size of dysplastic lesions were greater in TLR4-/-BM→WT mice than in WT BM→TLR4-/-mice (P<0.005). Histologically, TLR4-/-BM→WT mice had greater numbers of mucosal neutrophils and macrophages compared to WT BM→TLR4-/-mice. The chemokines KC and CCL2, important in recruitment of neutrophils and macrophages, respectively, were induced in mice expressing TLR4 in CEC rather than the myeloid compartment. The lamina propria infiltrate of mice expressing TLR4 in CEC was characterized by macrophages expressing Cox-2. Moreover, mice expressing TLR4 in CEC rather than the myeloid compartment had increased production of amphiregulin and EGFR activation. These findings indicate that TLR4 signaling on CEC is necessary for recruitment and activation of Cox-2 expressing macrophages and increasing the number and size of dysplastic lesions. Our results implicate innate immune signaling on CEC as a key regulator of a tumor-promoting microenvironment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.