Abstract. The aim of the current study was to observe the effects of simvastatin and taurine on delayed cerebral vasospasm (DCVS) following experimental subarachnoid hemorrhage (SAH) in rabbits. A total of 48 New Zealand white rabbits were allocated at random into four groups (control, SAH, SAH + simvastatin and SAH + taurine groups; n=12 each). The rabbit model of DCVS was established using a double hemorrhage method, which involved injecting autologous arterial blood into the cisterna magna in the SAH groups. The SAH + simvastatin group was administered oral simvastatin (5 mg/kg) daily between days 0-6. The SAH + taurine group was administered oral taurine (50 mg/kg) daily between days 0-6. Starch (50 mg/kg) was administered orally to the animals in the other two groups (control and SAH groups). The control group were not subjected to any other injections or treatment. The internal diameter and internal diameter/wall thickness of the basilar artery (BA) were measured. The expression levels of tumor necrosis factor (TNF)-α, interleukin (IL)-1β and IL-6 were determined using immunohistochemical and quantitative polymerase chain reaction methods following the sacrifice of all animals on day 7. The activity of nuclear factor (NF)-κB in the BA was also measured using an electrophoretic mobility shift assay. The BA walls in the SAH + simv astatin and SAH + taurine groups exhibited reduced narrowing and corrugation of the tunica elastica interna compared with the SAH group. At the protein and cDNA levels, it was found that cerebral vasospasm of the BA in the SAH + simvastatin and SAH + taurine groups was allevi ated, as indicated by the reduced expression of TNF-α, IL-1β, IL-6 and NF-κB compared with the SAH group (P<0.05). In conclusion, simvastatin and taurine reduced DCVS following SAH in rabbits, which suggests that these compounds may exert anti-inflammatory effects.
In this study, we determined the effect of 24 different synthetic 4-benzylpiperidine carboxamides on the reuptake of serotonin, norepinephrine, and dopamine (DA), and characterized their structure-activity relationship. The compounds with a two-carbon linker inhibited DA reuptake with much higher potency than those with a three-carbon linker. Among the aromatic ring substituents, biphenyl and diphenyl groups played a critical role in determining the selectivity of the 4-benzylpiperidine carboxamides toward the serotonin transporter (SERT) and dopamine transporter (DAT), respectively. Compounds with a 2-naphthyl ring were found to exhibit a higher degree of inhibition on the norepinephrine transporter (NET) and SERT than those with a 1-naphthyl ring. A docking simulation using a triple reuptake inhibitor 8k and a serotonin/norepinephrine reuptake inhibitor 7j showed that the regions spanning transmembrane domain (TM)1, TM3, and TM6 form the ligand binding pocket. The compound 8k bound tightly to the binding pocket of all three monoamine reuptake transporters; however, 7j showed poor docking with DAT. Co-expression of DAT with the dopamine D2 receptor (D2R) significantly inhibited DA-induced endocytosis of D2R probably by reuptaking DA into the cells. Pretreatment of the cells with 8f, which is one of the compounds with good inhibitory activity on DAT, blocked DAT-induced inhibition of D2R endocytosis. In summary, this study identified critical structural features contributing to the selectivity of a molecule for each of the monoamine transporters, critical residues on the compounds that bound to the transporters, and the functional role of a DA reuptake inhibitor in regulating D2R function.
Among 14 subtypes of serotonin receptors (5-HTRs), 5-HT2AR plays important roles in drug addiction and various psychiatric disorders. Agonists for 5-HT2AR have been classified into three structural groups: phenethylamines, tryptamines, and ergolines. In this study, the structure-activity relationship (SAR) of phenethylamine and tryptamine derivatives for binding 5-HT2AR was determined. In addition, functional and regulatory evaluation of selected compounds was conducted for extracellular signal-regulated kinases (ERKs) and receptor endocytosis. SAR studies showed that phenethylamines possessed higher affinity to 5-HT2AR than tryptamines. In phenethylamines, two phenyl groups were attached to the carbon and nitrogen (R 3 ) atoms of ethylamine, the backbone of phenethylamines. Alkyl or halogen groups on the phenyl ring attached to the carbon exerted positive effects on the binding affinity when they were at para positions. Oxygen-containing groups attached to R 3 exerted mixed influences depending on the position of their attachment. In tryptamine derivatives, tryptamine group was attached to the carbon of ethylamine, and ally groups were attached to the nitrogen atom. Oxygen-containing substituents on large ring and alkyl substituents on the small ring of tryptamine groups exerted positive and negative influence on the affinity for 5-HT2AR, respectively. Ally groups attached to the nitrogen atom of ethylamine exerted negative influences. Functional and regulatory activities of the tested compounds correlated with their affinity for 5-HT2AR, suggesting their agonistic nature. In conclusion, this study provides information for designing novel ligands for 5-HT2AR, which can be used to control psychiatric disorders and drug abuse.
Numerous psychotropic and addictive substances possess structural features similar to those of -phenethylamine (-PEA). In this study, we selected 29 -PEA derivatives and determined their structure-activity relationship (SAR) to their ability to inhibit dopamine (DA) reuptake; conducted docking simulation for two selected compounds; and identified their potential functionals. The compounds were subdivided into arylethylamines, 2-(alkyl amino)-1-arylalkan-1-one derivatives and alkyl 2-phenyl-2-(piperidin-2yl)acetate derivatives. An aromatic group, alkyl group, and alkylamine derivative were attached to the arylethylamine and 2-(alkyl amino)-1-arylalkan-1-one derivatives. The inhibitory effect of the compounds on dopamine reuptake increased in the order of the compounds substituted with phenyl, thiophenyl, and substituted phenyl groups in the aromatic position; compounds with longer alkyl groups and smaller ring-sized compounds at the alkylamine position showed stronger inhibitory activities. Docking simulation conducted for two compounds, 9 and 28, showed that the (S)-form of compound 9 was more stable than the (R)-form, with a good fit into the binding site covered by helices 1, 3, and 6 of human dopamine transporter (hDAT). In contrast, the (R, S)-configuration of compound 28 was more stable than that of other isomers and was firmly placed in the binding pocket of DAT bound to DA. DAinduced endocytosis of dopamine D2 receptors was inhibited when they were co-expressed with DAT, which lowered extracellular DA levels, and uninhibited when they were pretreated with compound 9 or 28. In summary, this study revealed critical structural features responsible for the inhibition of DA reuptake and the functional role of DA reuptake inhibitors in regulating D2 receptor function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.