Insulin is critical for glucose homeostasis, and insulin deficiency or resistance leads to the development of diabetes. Recent evidence suggests that diabetes can be remitted independent of insulin. However, the underlying mechanism remains largely elusive. In this study, we utilized metabolic surgery as a tool to identify the non-insulin determinant mechanism. Here, we report that the most common metabolic surgery, Roux-en-Y gastric bypass (RYGB), reduced insulin production but persistently maintained euglycemia in healthy Sprague-Dawley (SD) rats and C57 mice. This reduction in insulin production was associated with RYGB-mediated inhibition of pancreatic preproinsulin and polypyrimidine tract-binding protein 1. In addition, RYGB also weakened insulin sensitivity that was evaluated by hyperinsulinemic-euglycemic clamp test and downregulated signaling pathways in insulin-sensitive tissues. The mechanistic evidence suggests that RYGB predominately shifted the metabolic profile from glucose utilization to fatty acid oxidation, enhanced the energy expenditure and activated multiple metabolic pathways through reducing gut energy uptake. Importantly, the unique effect of RYGB was extended to rats with islet disruption and patients with type 2 diabetes. These results demonstrate that compulsory rearrangement of the gastrointestinal tract can initiate non-insulin determinant pathways to maintain glucose homeostasis. Based on the principle of RYGB action, the development of a noninvasive intervention of the gastrointestinal tract is a promising therapeutic route to combat disorders characterized by energy metabolism dysregulation.
Background Heme is an iron/porphyrin complex compound, widely used in the health care, food, and pharmaceutical industries. It is more advantageous and attractive to develop microbial cell factories to produce heme by fermentation, with lower production costs and environmentally more friendly procedures than those of the traditional extraction based on animal blood. In this study, Bacillus subtilis, a typical industrial model microorganism of food safety grade, was used for the first time as the host to synthesize heme. Results The heme biosynthetic pathway was engineered as four modules, the endogenous C5 pathway, the heterologous C4 pathway, the uroporphyrinogen (urogen) III synthesis pathway, and the downstream synthesis pathway. Knockout of hemX encoding the negative effector of the concentration of HemA, overexpression of hemA encoding glutamyl-tRNA reductase, and knockout of rocG encoding the major glutamate dehydrogenase in the C5 pathway, resulted in an increase of 427% in heme production. Introduction of the heterologous C4 pathway showed a negligible effect on heme biosynthesis. Overexpression of hemCDB, which encoded hydroxymethylbilane synthase, urogen III synthase, and porphobilinogen synthase participating in the urogen III synthesis pathway, increased heme production by 39%. Knockouts of uroporphyrinogen methyltransferase gene nasF and both heme monooxygenase genes hmoA and hmoB in the downstream synthesis pathway increased heme production by 52%. The engineered B. subtilis produced 248.26 ± 6.97 mg/L of total heme with 221.83 ± 4.71 mg/L of extracellular heme during the fed-batch fermentation in 10 L fermenter. Conclusions Strengthening endogenous C5 pathway, urogen III synthesis pathway and downstream synthesis pathway promoted the biosynthesis of heme in B. subtilis. The engineered B. subtilis strain has great potential as a microbial cell factory for efficient industrial heme production.
Background: Pregnancy with infective endocarditis (IE) is rare, but the fetal and maternal mortality rates of these pregnancies are very high, making IE a serious threat to the safety of pregnant women and their fetuses. Therefore, for pregnant women with recurrent fever, a detailed medical history and physical examination should be performed, echocardiography and blood culture should be carried out as soon as possible, multidisciplinary consultation should be implemented, and a diagnosis and treatment plan should be formulated right away, as this is key to saving the lives of mothers and infants. Case introduction: A 30-year-old pregnant Chinese woman had IE at 26 weeks of gestation. After close monitoring and care until 31 weeks of gestation, she underwent a successful delivery, cardiac surgery, repair of the patent ductus arteriosus (PDA), mitral valvuloplasty (MVP) and removal of the vegetations. The operation was successful, and further follow-up evaluation showed no abnormality. Conclusion: For the diagnosis and treatment of IE in pregnancy, it is of great importance to implement an individualized diagnosis and treatment plan in combination with close monitoring by echocardiography and to select the right time for cardiac surgery and termination of pregnancy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.