In the computer vision field, human action recognition depending on pose estimation recently made considerable progress, especially by using deep learning, which improves recognition performance. Therefore, it has been employed in various applications, including sports and physical activity follow-up. This paper presents a technique for recognizing the human posture in different images and matching their pose similarity. This aims to evaluate the viability of employing computer vision techniques to verify a person's body pose during exercise and determine whether the pose is executed properly. Exercise is one strategy we use to maintain our health throughout life. Gymnastics and yoga are two examples of this type of exercise. The proposed algorithm identifies human action by recognizing the body's key points. The OpenPose library has been used to detect 18 key points of the human body. The action classification task is performed using the support vector machine (SVM) algorithm. Then, the algorithm computes the similarity of the human pose by comparing a model image to a test image to determine the matching score. Evaluations show that our method can perform at a competitive or state-of-the-art performance on a number of body pose datasets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.