This paper contains an equivalent statements of a pre- space, where are considered subsets of with the product topology. An equivalence relation between the preclosed set and a pre- space, and a relation between a pre- space and the preclosed set with some conditions on a function are found. In addition, we have proved that the graph of is preclosed in if is a pre- space, where the equivalence relation on is open. On the other hand, we introduce the definition of a pre-stable ( pre-stable) set by depending on the concept of a pre-neighborhood, where we get that every stable set is pre-stable. Moreover, we obtain that a pre-stable ( pre-stable) set is positively invariant (invariant), and we add a condition on this set to prove the converse. Finally, a relationship between, (i) a pre-stable ( pre-stable) set and its component (ii) a pre- space and a (positively critical point) critical point, are gotten.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.