Climate change has devastating effects on plant growth and yield. During ontogenesis, plants are subjected to a variety of abiotic stresses, including drought and salinity, affecting the crop loss (20–50%) and making them vulnerable in terms of survival. These stresses lead to the excessive production of reactive oxygen species (ROS) that damage nucleic acid, proteins, and lipids. Plant growth-promoting bacteria (PGPB) have remarkable capabilities in combating drought and salinity stress and improving plant growth, which enhances the crop productivity and contributes to food security. PGPB inoculation under abiotic stresses promotes plant growth through several modes of actions, such as the production of phytohormones, 1-aminocyclopropane-1-carboxylic acid deaminase, exopolysaccharide, siderophore, hydrogen cyanide, extracellular polymeric substances, volatile organic compounds, modulate antioxidants defense machinery, and abscisic acid, thereby preventing oxidative stress. These bacteria also provide osmotic balance; maintain ion homeostasis; and induce drought and salt-responsive genes, metabolic reprogramming, provide transcriptional changes in ion transporter genes, etc. Therefore, in this review, we summarize the effects of PGPB on drought and salinity stress to mitigate its detrimental effects. Furthermore, we also discuss the mechanistic insights of PGPB towards drought and salinity stress tolerance for sustainable agriculture.
Vegetable cultivation is a promising economic activity, and vegetable consumption is important for human health due to the high nutritional content of vegetables. Vegetables are rich in vitamins, minerals, dietary fiber, and several phytochemical compounds. However, the production of vegetables is insufficient to meet the demand of the ever-increasing population. Plant-growth-promoting rhizobacteria (PGPR) facilitate the growth and production of vegetable crops by acquiring nutrients, producing phytohormones, and protecting them from various detrimental effects. In this review, we highlight well-developed and cutting-edge findings focusing on the role of a PGPR-based bioinoculant formulation in enhancing vegetable crop production. We also discuss the role of PGPR in promoting vegetable crop growth and resisting the adverse effects arising from various abiotic (drought, salinity, heat, heavy metals) and biotic (fungi, bacteria, nematodes, and insect pests) stresses.
Salinity stress is one of the most serious environmental stresses which limit plant growth, development and productivity. In this study, we screened 25 bacterial isolates based on the biochemical activity of ACC deaminase. Two potent PGPR namely Bacillus marisflavi (CHR JH 203) and Bacillus cereus (BST YS1_42) having the highest ACC deaminase (ACCD) activity were selected for further analyses such as polymerase chain reaction (PCR), salt tolerance assay, expression analysis, antioxidant assay, etc. The structural gene for ACCD activity was further confirmed by PCR showing the amplicon size ̴ 800 bp. The acdS positive isolates exhibited optimum growth at 3% w/v (NaCl), indicating its ability to survive and thrive in induced saline soil. Inoculation of acdS + strain on pea plants was found to be efficient and ameliorated the induced NaClstress by enhancing the various parameters like plant-biomass, carbohydrates, reducing sugars, protein, chlorophylls, phenol, flavonoids content and increasing antioxidants enzymes levels in plants. Moreover, the expression of ROS scavenging genes (PsSOD, PsCAT, PsPOX, PsNOS, PsAPX, PsChla/bBP), defense genes and cell rescue genes (PsPRP, PsMAPK, PsFDH) were analyzed. Inoculated plants exhibited a higher gene expression level and salt tolerance under 1%NaCl concentration. Thus, our results indicate that CHR JH 203 and BST YS1_42 strain showed the highest plant growth-promoting attributes could be used as bio-inoculants for crops under saline stress in the field towards sustainable crop development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.