Injury of the spinal cord leads to an inflammatory tissue response, probably mediated in part by cytokines. Because a common therapy for acute spinal cord injury is the use of an antiinflammatory synthetic glucocorticoid (methylprednisolone), we sought to determine mechanisms contributing to inflammation shortly after acute injury. Cytokine mRNAs [interleukin (IL)-1alpha, IL-1beta, tumor necrosis factor (TNF)-alpha, and IL-6] were increased during the first 2 hr following weight-drop compression injury by RNase protection assay, prior to the reported appearance of circulating lymphocytes. This immediate pattern of cytokine mRNA induction could be replicated in cultured, explanted spinal cord slices but not in whole blood of injured animals, which is consistent with a tissue source of cytokine mRNAs. Western blotting detected IL-1beta-like immunoreactivity released into culture medium following explantation and pro-IL-1beta-like immunoreactivity in freshly dissected spinal cord tissue. Pharmacologically blocking IL-1 and TNF-alpha receptors significantly reduced expression of IL-1alpha, IL-1beta, and TNF-alpha mRNAs. Finally, mice lacking both IL-1 and TNF-alpha receptors exhibited diminished induction of TNF-alpha, IL-6, and IL-1ra mRNAs following injury. Therefore, we conclude that contusion injury induces an immediate release of cytokines, which then contributes to the induction of cytokine mRNAs.
Aromatic L-amino acid decarboxylase (AADC, EC 4.1.1.28) catalyzes the decarboxylation of L-dopa to dopamine in catecholamine cells and 5-hydroxytryptophan to serotonin in serotonin-producing neurons. This enzyme is also expressed in relatively large quantities in nonneuronal tissues such as liver and kidney, where its function is unknown. Neuronal and nonneuronal tissues express AADC mRNAs with distinct 5' untranslated regions. To understand how this is accomplished at the genomic level, we have isolated rat genomic DNA encoding AADC. The organization of the AADC gene suggests that there are two separate promoters specific for the transcription of neuronal and nonneuronal forms of the AADC message. A small exon containing 68 bases of the neuronalspecific 5' end is located -9.5 kilobases upstream of the translation start site, which is contained in the third exon. Approximately 7 kilobases upstream from the neuron-specific promoter is another small exon containing 71 bases ofthe 5' end of the nonneuronal AADC message. These data suggest that transcription initiating at distinct promoters, followed by alternative splicing, is responsible for the expression of the neuronal and nonneuronal forms of the AADC message.
The rat aromatic L-amino acid decarboxylase (AADC) gene contains alternative promoters which direct expression of neuronal and nonneuronal mRNAs that differ only in their 5-untranslated regions (UTRs). We have analyzed the expression of the nonneuronal promoter of the rat AADC gene in the kidney epithelial cell line LLC-PK 1 and in cells which do not express the nonneuronal form of AADC by transient transfection. These studies revealed that the first 1.1 kilobases of the nonneuronal promoter, including the nonneuronal-specific 5-UTR (Exon 1), contains sufficient information to direct tissue-specific expression. Serial deletions of this promoter localized the cis-active element to a region between ؊52 and ؊28 base pairs upstream of the nonneuronal transcription start site. An A/T-rich sequence, within this region which we have termed KL-1, was found to bind a kidney and liver-specific factor by DNase footprint analysis and was capable of directing tissue-specific expression from a heterologous promoter. Moreover, when the KL-1 sequence was mutated in the context of the entire promoter sequence, all transcriptional activity was abolished. DNA sequence comparison revealed that the KL-1 fragment is highly homologous to the binding site for hepatocyte nuclear factor-1 (HNF-1). Mobility shift studies utilizing an antibody to HNF-1 demonstrated binding of HNF-1 to the KL-1 fragment and cotransfection of HNF-1 cDNA into cells which do not express the nonneuronal form of AADC resulted in activation of transfected AADC nonneuronal promoter constructs. These results strongly suggest that the transcription factor which regulates the tissue-specific expression of the nonneuronal form of AADC mRNA is HNF-1.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.