Though energy attenuating (EA) seats for air and spacecraft applications have existed for decades, they have not yet been fully characterized for their energy attenuation capability or resulting effect on occupant protection in vertical underbody blast. EA seats utilize stroking mechanisms to absorb energy and reduce the vertical forces imparted on the occupant's pelvis and lower spine. Using dynamic rigid-body modeling, a tool to determine optimal force and deflection limits was developed to reduce pelvis and lower spine injuries in underbody blast events using a generic seat model. MAthematical DYnamic MOdels (MADYMO) and modeFRONTIER software were leveraged for this study. This optimizing tool may be shared with EA seat manufacturers and applied to military seat development efforts for EA mechanisms for a given occupant and designated blast severity. To optimally tune the EA seat response, the MADYMO Human Body Model (HBM) was first updated to improve its fidelity in kinematic response data for high rate vertical accelerative loading relative to experimental data from laboratory simulated underbody blast tests using post-mortem human surrogates (PMHS). Subsequently, using available injury criteria for underbody blast, the optimization tool demonstrated the ability to identify successful EA mechanism configurations to reduce forces and accelerations in the pelvis and lower spine HBM to presumed non-injurious levels. This tool could be tailored by varying input pulses, force and deflection limits, and occupant size to evaluate EA mechanism designs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.