The 5 leader of the human immunodeficiency virus type 1 (HIV-1) genomic RNA contains highly structured domains involved in key steps of the viral life cycle. These RNA domains inhibit cap-dependent protein synthesis. Here we report that the HIV-1 5 leader harbors an internal ribosome entry site (IRES) capable of driving protein synthesis during the G 2 /M cell cycle phase in which cap-dependent initiation is inhibited. The HIV-1 IRES was delineated with bicistronic mRNAs in in vitro and ex vivo assays. The HIV-1 leader IRES spans nucleotides 104 to 336 and partially overlaps the major determinants of genomic RNA packaging. These data strongly suggest that, as for HIV-1 transcription, IRES-mediated translation initiation could play an important role in virus replication during virus-induced G 2 /M cell cycle arrest.
The interaction between the poly(A)-binding protein (PABP) and eukaryotic translational initiation factor 4G (eIF4G), which brings about circularization of the mRNA, stimulates translation. General RNA-binding proteins affect translation, but their role in mRNA circularization has not been studied before. Here, we demonstrate that the major mRNA ribonucleoprotein YB-1 has a pivotal function in the regulation of eIF4F activity by PABP. In cell extracts, the addition of YB-1 exacerbated the inhibition of 80S ribosome initiation complex formation by PABP depletion. Rabbit reticulocyte lysate in which PABP weakly stimulates translation is rendered PABP-dependent after the addition of YB-1. In this system, eIF4E binding to the cap structure is inhibited by YB-1 and stimulated by a nonspecific RNA. Significantly, adding PABP back to the depleted lysate stimulated eIF4E binding to the cap structure more potently if this binding had been downregulated by YB-1. Conversely, adding nonspecific RNA abrogated PABP stimulation of eIF4E binding. These data strongly suggest that competition between YB-1 and eIF4G for mRNA binding is required for efficient stimulation of eIF4F activity by PABP.
Using a rapid, clinically compliant culture system, we show that autologous BK virus-specific T cell lines can be reliably generated from viremic KTR. Our results pave the way for the treatment or prevention of PVAN with adoptive immunotherapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.