More than 230,000 known species representing 31 metazoan phyla populate the world's oceans. Perhaps another 1,000,000 or more species remain to be discovered. There is reason for concern that species extinctions may out-pace discovery, especially in diverse and endangered marine habitats such as coral reefs. DNA barcodes (i.e., short DNA sequences for species recognition and discrimination) are useful tools to accelerate species-level analysis of marine biodiversity and to facilitate conservation efforts. This review focuses on the usual barcode region for metazoans: a approximately 648 base-pair region of the mitochondrial cytochrome c oxidase subunit I (COI) gene. Barcodes have also been used for population genetic and phylogeographic analysis, identification of prey in gut contents, detection of invasive species, forensics, and seafood safety. More controversially, barcodes have been used to delimit species boundaries, reveal cryptic species, and discover new species. Emerging frontiers are the use of barcodes for rapid and increasingly automated biodiversity assessment by high-throughput sequencing, including environmental barcoding and the use of barcodes to detect species for which formal identification or scientific naming may never be possible.
Planktonic copepods of the genus Calanus play a central role in North Atlantic/Arctic marine food webs. Here, using molecular markers, we redrew the distributional ranges of Calanus species inhabiting the North Atlantic and Arctic Oceans and revealed much wider and more broadly overlapping distributions than previously described. The Arctic shelf species, C. glacialis, dominated the zooplankton assemblage of many Norwegian fjords, where only C. finmarchicus has been reported previously. In these fjords, high occurrences of the Arctic species C. hyperboreus were also found. Molecular markers revealed that the most common method of species identification, prosome length, cannot reliably discriminate the species in Norwegian fjords. Differences in degree of genetic differentiation among fjord populations of the two species suggested that C. glacialis is a more permanent resident of the fjords than C. finmarchicus. We found no evidence of hybridization between the species. Our results indicate a critical need for the wider use of molecular markers to reliably identify and discriminate these morphologically similar copepod species, which serve as important indicators of climate responses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.