On April 22, CDC and the U.S. Department of Agriculture (USDA) reported cases of two domestic cats with confirmed infection with SARS-CoV-2, the virus that causes coronavirus disease 2019 (COVID-19). These are the first reported companion animals (including pets and service animals) with SARS-CoV-2 infection in the United States, and among the first findings of SARS-CoV-2 symptomatic companion animals reported worldwide. These feline cases originated from separate households and were epidemiologically linked to suspected or confirmed human COVID-19 cases in their respective households. Notification of presumptive positive animal test results triggered a One Health* investigation by state and federal partners, who determined that no further transmission events to other animals or persons had occurred. Both cats fully recovered. Although there is currently no evidence that animals play a substantial role in spreading COVID-19, CDC advises persons with suspected or confirmed COVID-19 to restrict contact with animals during their illness and to monitor any animals with confirmed SARS-CoV-2 infection and separate them from other persons and animals at home (1). SARS-CoV-2 is a zoonotic coronavirus that likely originated in bats (2). A small number of animals worldwide, including dogs, cats, zoo tigers and lions, and farmed mink, have been infected naturally with SARS-CoV-2, mostly through suspected human-to-animal transmission † (3). In addition, experimental studies in ferrets, golden Syrian hamsters, Egyptian fruit bats, and cats show that these species can transmit infection to cohoused animals of the same species (4-7). SARS-CoV-2 Clinical Presentation in Domestic Cats On March 24, in Nassau County, New York, a 4-year-old male domestic shorthair (cat A), developed respiratory illness characterized by sneezing, clear ocular discharge, and mild lethargy (Figure). On April 1, the cat was taken to a veterinary clinic; on physical examination the cat was found to be * One Health is a collaborative, multisectoral, and transdisciplinary approach, working at the local, regional, national, and global levels, with the goal of achieving optimal health outcomes recognizing the interconnection between humans, animals, plants, and their shared environment. † https://www.oie.int/scientific-expertise/specific-information-andrecommendations/questions-and-answers-on-2019novel-coronavirus/.
C oronaviruses are a family of RNA viruses whose large genomes, propensity for mutation, and frequent recombination events have resulted in a diversity of strains and species that are capable of rapid adaptation to new hosts and ecologic environments (1). This viral plasticity has garnered widespread concern because of zoonotic potential and the consequences of new emergence events in both human and animal populations. The emergence of a new strain of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which causes coronavirus disease (COVID-19) has once again demonstrated the role of the family Coronaviridae in causing human disease outbreaks. SARS-CoV-2, a novel betacoronavirus, was identifi ed in human patients from Wuhan, China, during December 2019 and has resulted in a global pandemic, an unprecedented public health emergency, and untold economic and societal repercussions worldwide. Similar to the 2002-2003 severe acute respiratory syndrome (SARS) epidemic, a live animal market where hundreds of animal species were sold is suspected to be associated with the emergence or early spread of COVID-19 in humans (2). Although COVID-19 is novel in the breadth of the human outbreak, several pathogenic alphacoronaviruses and betacoronaviruses have shown similar patterns of emergence. As early as the 1930s, coronaviruses pathogenic to livestock, companion animals, and laboratory animals were identifi ed (3). During the 1960s, 2 human coronaviruses, HCoV-229E and HCoV-OC43, were detected in patients who had common colds (4,5). Although it is speculated that HCoV-OC43 might also have emerged through a global pandemic in the late 1800s (6), the 2002-2003 SARS outbreak is the fi rst known global epidemic caused by a coronavirus. The SARS epidemic triggered research within this viral family (3). This research led to detection of 2 new human coronaviruses, HCoV-NL63 and HCoV-HKU1 (7,8). HCoV-229E, HCoV-OC43, HCoV-NL63, and HCoV-HKU1 are now accepted as globally endemic common cold species that are typically associated with mild-to-moderate respiratory illness. In 2012, the most deadly human coronavirus to date was detected in the Arabian Peninsula: Middle East respiratory syndrome coronavirus (MERS-CoV) (9). A cumulative body of research on these and other coronaviruses has shown that most alphacoronaviruses and betacoronaviruses infecting humans have come from animal hosts and that both historic patterns and coronavirus biology establish an urgent ongoing threat to human and animal health (10).
To establish a pathoepidemiological model to evaluate the role of SARS-CoV-2 infection in the first 10 companion animals that died while infected with SARS-CoV-2 in the US. ANIMALS 10 cats and dogs that tested positive for SARS-CoV-2 and died or were euthanized in the US between March 2020 and January 2021. PROCEDURESA standardized algorithm was developed to direct case investigations, determine the necessity of certain diagnostic procedures, and evaluate the role, if any, that SARS-CoV-2 infection played in the animals' course of disease and death. Using clinical and diagnostic information collected by state animal health officials, state public health veterinarians, and other state and local partners, this algorithm was applied to each animal case. RESULTS SARS-CoV-2 was an incidental finding in 8 animals, was suspected to have contributed to the severity of clinical signs leading to euthanasia in 1 dog, and was the primary reason for death for 1 cat. CONCLUSIONS AND CLINICAL RELEVANCEThis report provides the global community with a standardized process for directing case investigations, determining the necessity of certain diagnostic procedures, and determining the clinical significance of SARS-CoV-2 infections in animals with fatal outcomes and provides evidence that SARS-CoV-2 can, in rare circumstances, cause or contribute to death in pets.S ARS-CoV-2, the virus that causes COVID-19, is be-From the CDC,
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.