Audiometry and exposure measurements were conducted on workers from fiberglass and metal products manufacturing plants and a mail distribution terminal (N = 313). Workers exposed to noise and styrene had significantly worse pure-tone thresholds at 2, 3, 4, and 6 kHz when compared with noise-exposed or nonexposed workers. Age, noise exposure, and urinary mandelic acid (a biologic marker for styrene) were the variables that met the significance level criterion in the multiple logistic regression. The odds ratios for hearing loss were 1.19 for each increment of 1 year of age (95% confidence interval [CI], 1.11-1.28), 1.18 for every decibel >85 dB(A) of noise exposure (95% CI, 1.01-1.34), and 2.44 for each millimole of mandelic acid per gram of creatinine in urine (95% CI, 1.01-5.89). Our findings suggest that exposure to styrene even below recommended values had a toxic effect on the auditory system.
Audiological testing, interviews and exposure measurements were used to collect data on the health effects of styrene exposures in 313 workers from fiberglass and metal-product manufacturing plants and a mail terminal. The audiological test battery included pure-tone audiometry, distortion product otoacoustic emissions (DPOAE), psychoacoustic modulation transfer function, interrupted speech, speech recognition in noise and cortical response audiometry (CRA). Workers exposed to noise and styrene had significantly poorer pure-tone thresholds in the high-frequency range (3 to 8 kHz) than the controls, noise-exposed workers and those listed in a Swedish age-specific database. Even though abnormalities were noted on DPOAE and CRA testing, the interrupted speech and speech recognition in noise tests were the more sensitive tests for styrene effects. Further research is needed on the underlying mechanisms to understand the effects of styrene and on audiological test batteries to detect changes in populations exposed to solvents.
In military outdoor shooting training, with safety measures enforced, the risk of a permanent, noise-induced hearing loss is very small. But urban warfare training performed indoors, with reflections from walls, might increase the risk. A question is whether antioxidants can reduce the negative effects of noise on human hearing as it does on research animals. Hearing tests were performed on a control group of 23 military officers before and after a shooting session in a bunker-like room. The experiments were repeated on another group of 11 officers with peroral adminstration of N-acetyl-cysteine (NAC), directly after the shooting. The measurements performed were tone thresholds; transient-evoked otoacoustic emissions, with and without contralateral noise; and psycho-acoustical modulation transfer function (PMTF), thresholds for brief tones in modulated noise. Effects from shooting on hearing thresholds were small, but threshold behavior supports use of NAC treatment. On the PMTF, shooting without NAC gave strong effects. Those effects were like those from continuous noise, which means that strict safety measures should be enforced. The most striking finding was that the non-linearity of the cochlea, that was strongly reduced in the group without NAC, as manifested by the PMTF-results, was practically unchanged in the NAC-group throughout the study. NAC treatment directly after shooting in a bunkerlike room seems to give some protection of the cochlea.
Noise-induced hearing loss (NIHL) is a significant clinical, social, and economic issue. The development of novel therapeutic agents to reduce NIHL will potentially benefit multiple very large noise-exposed populations. Oxidative stress has been identified as a significant contributor to noise-induced sensory cell death and noise-induced hearing loss, and several antioxidant strategies have now been suggested for potential translation to human subjects. One such strategy is a combination of beta-carotene, vitamins C and E, and magnesium, which has shown promise for protection against NIHL in rodent models, and is being evaluated in a series of international human clinical trials using temporary (military gunfire, audio player use) and permanent (stamping factory, military airbase) threshold shift models (NCT00808470). The noise exposures used in the recently completed Swedish military gunfire study described in this report did not, on average, result in measurable changes in auditory function using conventional pure-tone thresholds and distortion product otoacoustic emission (DPOAE) amplitudes as metrics. However, analysis of the plasma samples confirmed significant elevations in the bloodstream 2 hours after oral consumption of active clinical supplies, indicating the dose is realistic. The plasma outcomes are encouraging, but clinical acceptance of any novel therapeutic critically depends on demonstration that the agent reduces noise-induced threshold shift in randomized, placebo-controlled, prospective human clinical trials. Although this noise insult did not induce hearing loss, the trial design and study protocol can be applied to other populations exposed to different noise insults.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.