In mobile communication systems, local scatterers in the vicinity of the sources cause angular spreading of radiating signals as seen from a base station antenna array. Thus, the base station antenna array is typically situated on the roof of a high building away from potential multipath reflectors. The uniform circular array (UCA) geometry provides 360° azimuthal coverage and also provides information on source elevation angles. We consider the problem of two-dimensional (azimuth and elevation) direction-of-arrival (DOA) estimation with UCA. In the multipath scenario, the base station antenna can receive many coherent signals that cause the array manifold to be different from the conventional array manifold model. Herein, parameters of the spatial signature in the presence of local scattering are presented which apply to UCA. Then, we present a fast searching technique to improve the efficiency of the MUSIC algorithm for two-dimensional DOA estimation. The fast signal subspace-based estimation method utilizes the ESPRIT algorithm and then adopts sequential one-dimensional searching to save computational cost. Several simulation results are included for illustration and comparison.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.