Human sera from the United States, Thailand, and sub-Saharan Africa and chimpanzee sera were tested for neutralizing antibodies to 3 chimpanzee adenoviruses. Antibodies were more common in humans residing in sub-Saharan Africa than in humans living in the United States or Thailand. This finding suggests cross-species transmission of chimpanzee adenoviruses.
In this study we compared a prime-boost regimen with two serologically distinct replication-defective adenovirus (Ad) vectors derived from chimpanzee serotypes C68 and C1 expressing Gag, Pol, gp140, and Nef of human immunodeficiency virus type 1 with a regimen in which replication-defective Ad vectors of the human serotype 5 (AdHu5) were given twice. Experiments were conducted in rhesus macaques that had or had not been preexposed to antigens of AdHu5. There was no significant difference in T-cell responses tested from peripheral blood of the different groups, although responses were overall highest in nonpreexposed animals
Recent studies have indicated that type I interferon (IFN) enhances antibody responses and promotes isotype switching. In this study, we analyzed the role of type I IFN signaling during the generation of transgene product-specific antibody responses elicited by recombinant adenovirus (Ad) vectors. A vector derived from a human Ad serotype (AdHu5) induced low levels of type I IFN following infection of dendritic cells (DCs) and stimulated normal transgene product-specific antibody responses in mice that have a defective type I IFN receptor (IFNAR(-/-)). A vector derived from a chimpanzee Ad serotype (AdC68) induced very high levels of type I IFN following infection of DCs, and surprisingly, primed stronger transgene product-specific antibody responses in IFNAR(-/-) mice compared to wild-type mice. The increased antibody response in IFNAR(-/-) mice vaccinated with the AdC68 vector was mainly due to the generation of IgG1 antibodies that were not elicited in wild-type mice. The induction of IgG1 antibodies correlated with an increase in transgene product expression in IFNAR(-/-) mice and was not associated with an increase in T helper 2 responses. We conclude that type I IFN, when induced at high levels, can downregulate transgene product expression of Ad vectors and inhibit the formation of optimal antibody responses.
Gut-associated lymphoid tissue (GALT) is the primary replication site for HIV-1, resulting in a pronounced CD4 + T cell loss in this tissue during primary infection. A mucosal vaccine that generates HIV-specific CD8 + T cells in the gut could prevent the establishment of founder populations and broadcasting of virus. Here, we immunized mice orally and systemically with a chimpanzee derived adenoviral vector expressing HIV gag (AdC68gag) and measured frequencies of gag-specific interferon-gamma (IFN-γ) producing CD8 + T cells in the GALT. A single oral administration was inefficient at eliciting responses in the mesenteric lymph nodes and Peyer's Patches, while a single intramuscular administration elicited strong systemic and detectable mucosal responses. The gagspecific CD8 + T cell responses were present in both acute and memory phases following intramuscular administration.
Rabies has the highest fatality rate of all human viral infections and the virus could potentially be disseminated through aerosols. Currently licensed vaccines to rabies virus are highly effective but it is unknown if they would provide reliable protection to rabies virus transmitted through inhalation, which allows rapid access to the central nervous system upon entering olfactory nerve endings. Here we describe preclinical data with a novel vaccine to rabies virus based on a recombinant replication-defective chimpanzee-origin adenovirus vector expressing the glycoprotein of the Evelyn Rokitniki Abelseth strain of rabies virus. This vaccine, termed AdC68rab.gp, induces sustained central and mucosal antibody responses to rabies virus after oral application and provides complete protection against rabies virus acquired through inhalation even if given at a moderate dose.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.