BACE1 (beta-site amyloid precursor protein cleaving enzyme 1) was initially cloned and characterized in 1999. It is required for the generation of all monomeric forms of amyloid-b (Ab), including Ab 42 , which aggregates into bioactive conformational species and likely initiates toxicity in Alzheimer's disease (AD). BACE1 concentrations and rates of activity are increased in AD brains and body fluids, thereby supporting the hypothesis that BACE1 plays a critical role in AD pathophysiology. Therefore, BACE1 is a prime drug target for slowing down Ab production in early AD. Besides the amyloidogenic pathway, BACE1 has other substrates that may be important for synaptic plasticity and synaptic homeostasis. Indeed, germline and adult conditional BACE1 knockout mice display complex neurological phenotypes. Despite BACE1 inhibitor clinical trials conducted so far being discontinued for futility or safety reasons, BACE1 remains a well-validated therapeutic target for AD. A safe and efficacious compound with high substrate selectivity as well as a more accurate dose regimen, patient population, and disease stage may yet be found. Further research should focus on the role of Ab and BACE1 in physiological processes and key pathophysiological mechanisms of AD. The functions of BACE1 and the homologue BACE2, as well as the biology of Ab in neurons and glia, deserve further investigation. Cellular and molecular studies of BACE1 and BACE2 knockout mice coupled with biomarker-based human research will help elucidate the biological functions of these important enzymes and identify their substrates and downstream effects. Such studies will have critical implications for BACE1 inhibition as a therapeutic approach for AD.
This study strengthens the potential of neurogranin as an AD CSF biomarker, which now needs validation in larger studies. As tools, straightforward immunoassays can be used, as demonstrated by the described ELISA.
INTRODUCTION: Blood-based biomarkers of pathophysiological brain amyloid β (Aβ) accumulation, particularly for preclinical target and large-scale interventions, are warranted to effectively enrich Alzheimer's disease clinical trials and management. METHODS: We investigated whether plasma concentrations of the Aβ1-40/Aβ1-42 ratio, assessed using the single-molecule array (Simoa) immunoassay, may predict brain Aβ positron emission tomography status in a large-scale longitudinal monocentric cohort (N = 276) of older individuals with subjective memory complaints. We performed a hypothesis-driven investigation followed by a no-a-priori hypothesis study using machine learning. RESULTS:The receiver operating characteristic curve and machine learning showed a balanced accuracy of 76.5% and 81%, respectively, for the plasma Aβ1-40/Aβ1-42 ratio. The accuracy is not affected by the apolipoprotein E (APOE) ε4 allele, sex, or age. DISCUSSION: Our results encourage an independent validation cohort study to confirm the indication that the plasma Aβ1-40/Aβ1-42 ratio, assessed via Simoa, may improve future standard of care and clinical trial design.
Budding yeast Saccharomyces cerevisiae has proven to be a valuable model organism for studying fundamental cellular processes across the eukaryotic kingdom including man. In this respect, complementation assays, in which the yeast protein is replaced by a homologous protein from another organism, have been very instructive. A newer trend is to use the yeast cell factory as a toolbox to understand cellular processes controlled by proteins for which the yeast lacks functional counterparts. An increasing number of studies have indicated that S. cerevisiae is a suitable model system to decipher molecular mechanisms involved in a variety of neurodegenerative disorders caused by aberrant protein folding. Here we review the current knowledge gained by the use of so-called humanized yeasts in the field of Huntington's, Parkinson's and Alzheimer's diseases.
BackgroundWhile neurogranin has no value as plasma biomarker for Alzheimer’s disease, it may be a potential blood biomarker for traumatic brain injury. This evokes the question whether there are changes in neurogranin levels in blood in other conditions of brain injury, such as acute ischemic stroke (AIS).MethodsWe therefore explored neurogranin in paired cerebrospinal fluid (CSF)/plasma samples of AIS patients (n = 50) from a well-described prospective study. In parallel, we investigated another neuronal protein, i.e. tau, which has already been suggested as potential AIS biomarker in CSF and blood. ELISA as well as Single Molecule Array (Simoa) technology were used for the biochemical analyses. Statistical analyses included Shapiro-Wilk testing, Mann-Whitney analyses and Pearson’s correlation analysis.ResultsIn contrast to tau, of which high levels in both CSF and plasma were related to stroke characteristics like severity and long-term outcome, plasma neurogranin levels were only correlated with infarct volume. Likewise, CSF neurogranin levels were significantly higher in patients with an infarct volume > 5 mL than in patients with smaller infarct volumes. Finally, neurogranin and tau were significantly correlated in CSF, whereas a weaker relationship was observed in plasma.ConclusionsThese findings indicate that although plasma and CSF neurogranin may reflect the volume of acute cerebral ischemia, this synaptic protein is less likely to be a potential AIS biomarker. Levels of tau correlated with severity and outcome of stroke in both plasma and CSF, in the present study as well as previous reports, confirming the potential of tau as an AIS biomarker.Electronic supplementary materialThe online version of this article (10.1186/s12883-017-0945-8) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.