An expert panel reviewed the expanding literature on marine mammal (cetacean and pinniped) auditory and behavioral responses to sound exposure to develop comprehensive, scientifically based noise exposure criteria [Aquatic Mammals 33(4)]. They used precautionary extrapolation procedures to predict exposure levels above which adverse effects (both physical and behavioral) could be expected. Due to the paucity of data on long-term exposures, criteria were developed for single exposure events only. Marine mammals were broken into functional hearing groups. Exposure types were lumped into three broad classes (single pulses, multiple pulses, and nonpulses). Levels estimated to induce permanent noise-induced hearing loss were determined for each of 15 sound type/animal group combinations. For example, injury criteria for pinnipeds in water exposed to multiple pulses were 186 dB re 1 μPa2 -s (weighted SEL) and 218 dBpk re 1 μPa (unweighted peak SPL). Discrete behavioral disturbance thresholds could only be determined for exposure to single pulses. For other exposures, available data on behavioral responses were ranked by severity and significance. This severity scaling and the resulting conclusions will be described. New research required to improve criteria and to assess cumulative and ecosystem-level effects will also be considered, along with current policy and/or regulatory applications.
Many animals produce vocal sequences that appear complex. Most researchers assume that these sequences are well characterized as Markov chains (i.e. that the probability of a particular vocal element can be calculated from the history of only a finite number of preceding elements). However, this assumption has never been explicitly tested. Furthermore, it is unclear how language could evolve in a single step from a Markovian origin, as is frequently assumed, as no intermediate forms have been found between animal communication and human language. Here, we assess whether animal taxa produce vocal sequences that are better described by Markov chains, or by non-Markovian dynamics such as the 'renewal process' (RP), characterized by a strong tendency to repeat elements. We examined vocal sequences of seven taxa: Bengalese finches Lonchura striata domestica, Carolina chickadees Poecile carolinensis, free-tailed bats Tadarida brasiliensis, rock hyraxes Procavia capensis, pilot whales Globicephala macrorhynchus, killer whales Orcinus orca and orangutans Pongo spp. The vocal systems of most of these species are more consistent with a non-Markovian RP than with the Markovian models traditionally assumed. Our data suggest that non-Markovian vocal sequences may be more common than Markov sequences, which must be taken into account when evaluating alternative hypotheses for the evolution of signalling complexity, and perhaps human language origins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.