In eukaryotes, accurate chromosome segregation in mitosis and meiosis maintains genome stability and prevents aneuploidy. Kinetochores are large protein complexes, that by assembling onto specialized Cenp-A nucleosomes 1,2 , function to connect centromeric chromatin to microtubules of the mitotic spindle 3,4 . Whereas the centromeres of vertebrate chromosomes comprise Mb of DNA and attach to multiple microtubules, the simple point centromeres of budding yeast are connected to individual microtubules 5,6 . All 16 budding yeast chromosomes assemble complete kinetochores using a single Cenp-A nucleosome (Cenp-A Nuc ), each of which is perfectly centred on its cognate centromere [7][8][9] . The inner and outer kinetochore modules are responsible for interacting with centromeric chromatin and microtubules, respectively. Here, we describe the cryo-EM structure of the S. cerevisiae inner kinetochore module -the constitutive centromere associated network (CCAN) complex, assembled onto a Cenp-A nucleosome (CCAN-Cenp-A Nuc ). The structure explains the inter-dependency of CCAN's constituent sub-complexes and shows how the 'Y'-shaped opening of CCAN accommodates Cenp-A Nuc to allow specific Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:
The majority of cytosolic proteins in eukaryotes contain a covalently linked acetyl moiety at their very N terminus. The mechanism by which the acetyl moiety is efficiently transferred to a large variety of nascent polypeptides is currently only poorly understood. Yeast N ␣ -acetyltransferase NatA, consisting of the known subunits Nat1p and the catalytically active Ard1p, recognizes a wide range of sequences and is thought to act cotranslationally. We found that NatA was quantitatively bound to ribosomes via Nat1p and contained a previously unrecognized third subunit, the N ␣ -acetyltransferase homologue Nat5p. Nat1p not only anchored Ard1p and Nat5p to the ribosome but also was in close proximity to nascent polypeptides, independent of whether they were substrates for N ␣ -acetylation or not. Besides Nat1p, NAC (nascent polypeptide-associated complex) and the Hsp70 homologue Ssb1/2p interact with a variety of nascent polypeptides on the yeast ribosome. A direct comparison revealed that Nat1p required longer nascent polypeptides for interaction than NAC and Ssb1/2p. ⌬nat1 or ⌬ard1 deletion strains were temperature sensitive and showed derepression of silent mating type loci while ⌬nat5 did not display any obvious phenotype. Temperature sensitivity and derepression of silent mating type loci caused by ⌬nat1 or ⌬ard1 were partially suppressed by overexpression of SSB1. The combination of data suggests that Nat1p presents the N termini of nascent polypeptides for acetylation and might serve additional roles during protein synthesis.
During DNA replication, transcription and DNA repair in eukaryotes, the cellular machineries performing these tasks need to gain access to the DNA that is packaged into chromatin in the nucleus. Chromatin is a dynamic structure that modulates the access of regulatory factors to the genetic material. A precise coordination and organization of events in opening and closing of the chromatin is crucial to ensure that the correct spatial and temporal epigenetic code is maintained within the eukaryotic genome. This review will summarize the current knowledge of how chromatin remodeling and histone modifying complexes cooperate to break and remake chromatin during nuclear processes on the DNA template.
The acetylation state of histones plays a central role in determining gene expression in chromatin. The reestablishment of the acetylation state of nucleosomes after DNA replication and chromatin assembly requires both deacetylation and acetylation of specific lysine residues on newly incorporated histones. In this study, the MYST family acetyltransferase Sas2 was found to interact with Cac1, the largest subunit of Saccharomyces cerevisiae chromatin assembly factor-I (CAF-I), and with the nucleosome assembly factor Asf1. The deletions of CAC1 (cac1⌬), ASF1 (asf1⌬), and SAS2 (sas2⌬) had similar effects on gene silencing and were partially overlapping. Furthermore, Sas2 was found in a nuclear protein complex that included Sas4 and Sas5, a homolog of TAF II 30. This complex, termed SAS-I, was also found to contribute to rDNA silencing. Furthermore, the observation that a mutation of H4 lysine 16 to arginine displayed the identical silencing phenotypes as sas2⌬ suggested that it was the in vivo target of Sas2 acetylation. In summary, our data present a novel model for the reestablishment of acetylation patterns after DNA replication, by which SAS-I is recruited to freshly replicated DNA by its association with chromatin assembly complexes to acetylate lysine 16 of H4.
Global protein translation as well as translation at the codon level can be regulated by tRNA modifications. In eukaryotes, levels of tRNA queuosinylation reflect the bioavailability of the precursor queuine, which is salvaged from the diet and gut microbiota. We show here that nutritionally determined Q‐tRNA levels promote Dnmt2‐mediated methylation of tRNA Asp and control translational speed of Q‐decoded codons as well as at near‐cognate codons. Deregulation of translation upon queuine depletion results in unfolded proteins that trigger endoplasmic reticulum stress and activation of the unfolded protein response, both in cultured human cell lines and in germ‐free mice fed with a queuosine‐deficient diet. Taken together, our findings comprehensively resolve the role of this anticodon tRNA modification in the context of native protein translation and describe a novel mechanism that links nutritionally determined modification levels to effective polypeptide synthesis and cellular homeostasis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.