Enantiomeric discrimination is observed in the (1)H and (13)C NMR spectra of piperidines and piperazines in the presence of (-)-(18-crown-6)-2,3,11,12-tetracarboxylic acid. The amines are protonated by the carboxylic acid groups of the crown ether to produce the corresponding ammonium and carboxylate ions. Association of the ammonium ion with the crown ether likely involves two hydrogen bonds with the crown ether oxygen atoms and an ion pair with the carboxylate anion. Methyl, hydroxymethyl, phenyl, carboxyl, pyridyl, and cyclohexyl substituent groups alpha to the nitrogen atom do not inhibit binding of the ammonium ion to the crown ether. The NMR spectra of piperidines with the stereogenic center alpha or beta to the nitrogen atom exhibit substantial enantiomeric discrimination. Dibasic substrates such as the piperizines are likely converted to their diprotonated form in the presence of the crown ether, and both nitrogen atoms appear to associate with the crown ether moiety.
[reaction: see text] Enantiomeric discrimination is observed in the (1)H NMR spectra of chiral secondary amines in the presence of (R)-(+)-(18-crown-6)-2,3,11,12-tetracarboxylic acid. Secondary amines are protonated by one of the carboxylic acid groups of the crown ether to produce the corresponding ammonium and carboxylate ions. The secondary ammonium ion likely forms two hydrogen bonds to crown ether oxygen atoms and an ion pair with the carboxylate anion.
Enantiomeric discrimination is observed in the 1H and 13C NMR spectra of secondary and tertiary amines in the presence of (-)-(18-crown-6)-2,3,11,12-tetracarboxylic acid (1). Nonequivalence of the resonances of prochiral nuclei in primary and secondary amines is also observed when they associate with 1. The amines are added in their neutral form and are protonated by the carboxylic acid groups of 1 to produce the corresponding ammonium and carboxylate ions. Secondary amines associate with 1 through two hydrogen bonds and an ion pair interaction. Tertiary amines can only form one hydrogen bond to accompany the ion pairing. Chiral discrimination in the 1H and 13C NMR spectra of a series of aryl-containing secondary amines is of sufficient magnitude to determine enantiomeric purities. The discrimination in the spectra of tertiary amines with 1 is smaller, but 13C NMR spectra provided enough distinction for the determination of enantiomeric purity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.