Hag¢sh intestinal antimicrobial peptides (HFIAPs) are a family of polycationic peptides exhibiting potent, broadspectrum bactericidal activity. In an attempt to unravel the mechanism of action of HFIAPs, we have studied their interaction with model membranes. Synthetic HFIAPs selectively bound to liposomes mimicking bacterial membranes, and caused the release of vesicle-encapsulated £uorescent markers in a sizedependent manner. In planar lipid bilayer membranes, HFIAPs induced erratic current £uctuations and reduced membrane line tension according to a general theory for lipidic pores, suggesting that HFIAP pores contain lipid molecules. Consistent with this notion, lipid transbilayer redistribution accompanied HFIAP pore formation, and membrane monolayer curvature regulated HFIAP pore formation. Based on these studies, we propose that HFIAPs kill target cells, at least in part, by interacting with their plasma membrane to induce formation of lipid-containing pores. Such a membrane-permeabilizing function appears to be an evolutionarily conserved host-defense mechanism of antimicrobial peptides. ß 2002 Published by Elsevier Science B.V. on behalf of the Federation of European Biochemical Societies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.