The ability to walk independently with the velocity and endurance that permit home and community activities is a highly regarded goal for neurological rehabilitation after stroke. This pilot study explored a functional magnetic resonance imaging (fMRI) activation paradigm for its ability to reflect phases of motor learning over the course of locomotor rehabilitation-mediated functional gains. Ankle dorsiflexion is an important kinematic aspect of the swing and initial stance phase of the gait cycle. The motor control of dorsiflexion depends in part on descending input from primary motor cortex. Thus, an fMRI activation paradigm using voluntary ankle dorsiflexion has face validity for the serial study of walking-related interventions. Healthy control subjects consistently engaged contralateral primary sensorimotor cortex (S1M1), supplementary motor area (SMA), premotor (PM) and cingulate motor (CMA) cortices, and ipsilateral cerebellum. Four adults with chronic hemiparetic stroke evolved practice-induced representational plasticity associated with gains in speed, endurance, motor control, and kinematics for walking. For example, an initial increase in activation within the thoracolumbar muscle representation of S1M1 in these subjects was followed by more focused activity toward the foot representation with additional pulses of training. Contralateral CMA and the secondary sensory area also reflected change with practice and gains. We demonstrate that the supraspinal sensorimotor network for the neural control of walking can be assessed indirectly by ankle dorsiflexion. The ankle paradigm may serve as an ongoing physiological assay of the optimal type, duration, and intensity of rehabilitative gait training.
Increased activation in the amygdala and decreased activation in the orbitofrontal cortex may represent disruption of a specific neuroanatomic circuit involved in mania. These brain regions may be implicated in disorders involving regulation of affect.
Fifteen posthemispherectomy children were examined to assess residual motor function of the paretic side using the 74-point Fugl-Meyer Assessment of Motor Recovery scale. The degree of residual motor control differed for upper and lower extremities, with hand function being most severely impaired. Posthemispherectomy motor outcomes also differed as a function of etiology: cortical dysplasia, perinatal infarct, and Rasmussen's encephalitis. Children whose intractable seizures resulted from perinatal middle cerebral artery stroke demonstrated the most spared motor function. To detect cortical areas that represented motor control of the hemiparetic side, we focused on voluntary control of the affected lower extremity. Seven of our patients were able to carry out a foot dorsiflexion paradigm during functional magnetic resonance imaging, and these results were compared with activations found in normal controls. All children showed activations in the sensorimotor network ipsilateral to the affected side. The perinatal infarct group demonstrated greater activity in the cingulate cortex, whereas the Rasmussen's encephalitis group had significant activations in the insula, suggesting etiology-specific differences in reorganization. These findings are discussed in the framework of our understanding of mechanisms of cortical plasticity in the injured brain and its relevance to neurologic rehabilitation. We suggest that imaging techniques are important tools in identifying cortical regions underlying functional reorganization. Furthermore, detection of such areas might become a basis for specific training promoting the optimal reorganization of cortical networks to enhance motor control.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.