The major goal of this study was to determine the affinity pattern of the terbutaline (TB) enantiomers toward α‐, β‐, γ‐, and heptakis(2,3‐di‐O‐acetyl)‐β‐cyclodextrins and using NMR spectroscopy for the understanding of the fine mechanisms of interaction between the cyclodextrins (CD) and TB enantiomers. It was shown once again that CE in combination with NMR spectroscopy represents a sensitive tool to study the affinity patterns and structure of CD complexes with chiral guests. Opposite affinity patterns of TB enantiomers toward native α‐ and β‐CDs were associated with significant differences between the structure of the related complexes in solution. In particular, the complex between TB enantiomers and α‐CD was of the external type, whereas an inclusion complex was formed between TB enantiomers and β‐CD. One of the possible structures of the complex between TB and heptakis(2,3‐di‐O‐acetyl)‐β‐CD (HDA‐β‐CD) was quite similar to that of TB and β‐CD, although the chiral recognition pattern and enantioselectivity of TB complexation with these two CDs were very different.
NMR spectroscopy experiments, molecular dynamics simulations, and theoretical chemistry calculations provide insight into the structural and energetic determinants of the distinct binding of clenpenterol enantiomers to two cyclodextrins and the migration order reversal of their respective inclusion complexes in capillary electrophoresis.
In the present study, the enantiomer migration order (EMO) of enilconazole in the presence of various cyclodextrins (CDs) was investigated by capillary electrophoresis (CE). Opposite EMO of enilconazole were observed when β-CD or the sulfated heptakis(2-O-methyl-3,6-di-O-sulfo)-β-CD (HMDS-β-CD) was used as the chiral selectors. Nuclear magnetic resonance (NMR) spectroscopy was used to study the mechanism of chiral recognition between enilconazole enantiomers and those two cyclodextrins. On the basis of rotating frame nuclear Overhauser (ROESY) experiments, the structure of an inclusion complex between enilconazole and β-CD was derived, in which (+)-enilconazole seemed to form a tighter complex than the (-)-enantiomer. This correlates well with the migration order of enilconazole enantiomers observed in CE. No evidence of complexation between enilconazole and HMDS-β-CD could be gathered due to lack of intermolecular nuclear Overhauser effect (NOE). Most likely the interaction between enilconazole and HMDS-β-CD leads to formation of a shallow external complex that is sufficient for separation of enantiomers in CE but cannot be evidenced based on ROESY experiment. Thus, in this particular case CE documents the presence of intermolecular interactions which are at least very difficult to be evidenced by other instrumental techniques.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.