The immature retinas of preterm neonates are susceptible to insults that disrupt neurovascular growth, leading to retinopathy of prematurity. Suppression of growth factors due to hyperoxia and loss of the maternal–fetal interaction result in an arrest of retinal vascularisation (phase 1). Subsequently, the increasingly metabolically active, yet poorly vascularised, retina becomes hypoxic, stimulating growth factor-induced vasoproliferation (phase 2), which can cause retinal detachment. In very premature infants, controlled oxygen administration reduces but does not eliminate retinopathy of prematurity. Identification and control of factors that contribute to development of retinopathy of prematurity is essential to prevent progression to severe sight-threatening disease and to limit comorbidities with which the disease shares modifiable risk factors. Strategies to prevent retinopathy of prematurity will depend on optimisation of oxygen saturation, nutrition, and normalisation of concentrations of essential factors such as insulin-like growth factor 1 and ω-3 polyunsaturated fatty acids, as well as curbing of the effects of infection and inflammation to promote normal growth and limit suppression of neurovascular development.
The mouse retina has been used extensively over the past decades to study both physiologic and pathologic angiogenesis. Over time, various mouse retina models have evolved into well-characterized and robust tools for in vivo angiogenesis research. This article is a review of the angiogenic development of the mouse retina and a discussion of some of the most widely used vascular disease models. From the multitude of studies performed in the mouse retina, a selection of representative works is discussed in more detail regarding their role in advancing the understanding of both the ocular and general mechanisms of angiogenesis.
Many sight-threatening diseases have two critical phases, vessel loss followed by hypoxia-driven destructive neovascularization. These diseases include retinopathy of prematurity and diabetic retinopathy, leading causes of blindness in childhood and middle age affecting over 4 million people in the United States. We studied the influence of ω-3-and ω-6-polyunsaturated fatty acids (PUFAs) on vascular loss, vascular regrowth after injury, and hypoxia-induced pathological neovascularization in a mouse model of oxygen-induced retinopathy 1 . We show that increasing ω-3-PUFA tissue levels by dietary or genetic means decreased the avascular area of the retina by Reprints and permissions information is available online at http://npg.nature.com/reprintsandpermissionsCorrespondence should be addressed to L.E.H.S. (lois.smith@childrens.harvard.edu).. Supplementary information is available on the Nature Medicine website. COMPETING INTERESTS STATEMENTThe authors declare competing financial interests: details accompany the full-text HTML version of the paper at http:// www.nature.com/naturemedicine/. HHS Public AccessAuthor manuscript Nat Med. Author manuscript; available in PMC 2015 July 05. Published in final edited form as:Nat Med. 2007 July ; 13(7): 868-873. doi:10.1038/nm1591. Author Manuscript Author ManuscriptAuthor ManuscriptAuthor Manuscript increasing vessel regrowth after injury, thereby reducing the hypoxic stimulus for neovascularization. The bioactive ω-3-PUFA-derived mediators neuroprotectinD1, resolvinD1 and resolvinE1 also potently protected against neovascularization. The protective effect of ω-3-PUFAs and their bioactive metabolites was mediated, in part, through suppression of tumor necrosis factor-α. This inflammatory cytokine was found in a subset of microglia that was closely associated with retinal vessels. These findings indicate that increasing the sources of ω-3-PUFA or their bioactive products reduces pathological angiogenesis. Western diets are often deficient in ω-3-PUFA, and premature infants lack the important transfer from the mother to the infant of ω-3-PUFA that normally occurs in the third trimester of pregnancy 2 . Supplementing ω-3-PUFA intake may be of benefit in preventing retinopathy.Ocular neovascularization is the most common cause of blindness in all age groups: retinopathy of prematurity in children, diabetic retinopathy in working-age adults and agerelated macular degeneration in the elderly. In principle, destructive angiogenesis in the eye can be ameliorated by either direct inhibition of neovascularization or by controlling vessel loss in order to reduce the hypoxic stimulus that drives neovascularization. Retinopathy is modeled in the mouse eye with oxygen-induced vessel loss, which precipitates hypoxiainduced retinopathy, allowing for assessment of retinal vessel loss, vessel regrowth after injury and pathological angiogenesis 1 .The role of lipids in angiogenesis is just beginning to be defined 3,4 . The major polyunsaturated fatty acids (PUFA) found in the retina a...
Retinopathy of prematurity is a blinding disease, initiated by lack of retinal vascular growth after premature birth. We show that lack of insulin-like growth factor I (IGF-I) in knockout mice prevents normal retinal vascular growth, despite the presence of vascular endothelial growth factor, important to vessel development. In vitro, low levels of IGF-I prevent vascular endothelial growth factor-induced activation of protein kinase B (Akt), a kinase critical for endothelial cell survival. Our results from studies in premature infants suggest that if the IGF-I level is sufficient after birth, normal vessel development occurs and retinopathy of prematurity does not develop. When IGF-I is persistently low, vessels cease to grow, maturing avascular retina becomes hypoxic and vascular endothelial growth factor accumulates in the vitreous. As IGF-I increases to a critical level, retinal neovascularization is triggered. These data indicate that serum IGF-I levels in premature infants can predict which infants will develop retinopathy of prematurity and further suggests that early restoration of IGF-I in premature infants to normal levels could prevent this disease.
These results indicate that persistent low serum concentrations of IGF-I after premature birth are associated with later development of ROP and other complications of prematurity. IGF-I is at least as strong a determinant of risk for ROP as postmenstrual age at birth and birth weight.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.