Rho GDP-dissociation inhibitors (RhoGDIs) modulate the cycling of Rho GTPases between active GTPbound and inactive GDP-bound states. We identi®ed two RhoGDI homologues in Dictyostelium. GDI1 shares 51±58% similarity to RhoGDIs from diverse species. GDI2 is more divergent (40±44% similarity) and lacks the N-terminal regulatory arm characteristic for RhoGDI proteins. Both are cytosolic proteins and do not relocalize upon reorganization of the actin cytoskeleton. Using a two-hybrid approach, we identi®ed Rac1a/1b/1c, RacB, RacC and RacE as interacting partners for GDI1. Cells lacking GDI1 are multinucleate, grow slowly and display a moderate pinocytosis defect, but rates of phagocytosis are unaffected. Mutant cells present prominent actin-rich protrusions, and large vacuoles that are continuous with the contractile vacuole system. The actin polymerization response upon stimulation with cAMP was reduced, but the motile behavior toward the chemoattractant was unaffected. Our results indicate that GDI1 plays a central role in the regulation of signal transduction cascades mediated by Rho GTPases.
Biofilms of the Gram-negative bacterium Pseudomonas aeruginosa are one of the major causes of complicated urinary tract infections with detrimental outcome. To develop novel therapeutic strategies the molecular adaption strategies of P. aeruginosa biofilms to the conditions of the urinary tract were investigated thoroughly at the systems level using transcriptome, proteome, metabolome and enzyme activity analyses. For this purpose biofilms were grown anaerobically in artificial urine medium (AUM). Obtained data were integrated bioinformatically into gene regulatory and metabolic networks. The dominating response at the transcriptome and proteome level was the adaptation to iron limitation via the broad Fur regulon including 19 sigma factors and up to 80 regulated target genes or operons. In agreement, reduction of the iron cofactor-dependent nitrate respiratory metabolism was detected. An adaptation of the central metabolism to lactate, citrate and amino acid as carbon sources with the induction of the glyoxylate bypass was observed, while other components of AUM like urea and creatinine were not used. Amino acid utilization pathways were found induced, while fatty acid biosynthesis was reduced. The high amounts of phosphate found in AUM explain the reduction of phosphate assimilation systems. Increased quorum sensing activity with the parallel reduction of chemotaxis and flagellum assembly underscored the importance of the biofilm life style. However, reduced formation of the extracellular polysaccharide alginate, typical for P. aeruginosa biofilms in lungs, indicated a different biofilm type for urinary tract infections. Furthermore, the obtained quorum sensing response results in an increased production of virulence factors like the extracellular lipase LipA and protease LasB and AprA explaining the harmful cause of these infections.
Asthmatic children are underestimated in school and participate in only 60 % equally to their healthy peers at sport-lessons. The knowledge about this most frequent chronic disease in children could be increased. Better training of teacher-students and teachers is recommended.
Pseudomonas aeruginosa is a notable nosocomial pathogen causing severe chronic infections. Here we present the draft genome sequence of P. aeruginosa MH27, isolated from a patient with a chronic hospital-acquired catheter-associated urinary tract infection. The 7.1-Mb genome sequence organized in 24 scaffolds contributes to the understanding of biofilm formation and antibiotic resistance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.