The efficiency of current dual antiplatelet therapy might be further improved by its combination with a glycoprotein (GP) VI-targeting strategy without increasing bleeding. GPVI-Fc, a recombinant dimeric fusion protein binding to plaque collagen and concealing binding sites for platelet GPVI, acts as a lesion-focused antiplatelet drug, and does not increase bleeding in vivo. We investigated, whether GPVI-Fc added in vitro on top of acetylsalicylic acid (ASA), the P2Y antagonist ticagrelor, and the fibrinogen receptor antagonist abciximab alone or in combination would increase inhibition of platelet activation by atherosclerotic plaque. Under static conditions, GPVI-Fc inhibited plaque-induced platelet aggregation by 53 %, and increased platelet inhibition by ASA (51 %) and ticagrelor (64 %) to 66 % and 80 %, respectively. Under arterial flow, GPVI-Fc inhibited plaque-induced platelet aggregation by 57 %, and significantly increased platelet inhibition by ASA (28 %) and ticagrelor (47 %) to about 81 % each. The triple combination of GPVI-Fc, ASA and ticagrelor achieved almost complete inhibition of plaque-induced platelet aggregation (93 %). GPVI-Fc alone or in combination with ASA or ticagrelor did not increase closure time measured by the platelet function analyzer (PFA)-200. GPVI-Fc added on top of abciximab, a clinically used anti-fibrinogen receptor antibody which blocks platelet aggregation, strongly inhibited total (81 %) and stable (89 %) platelet adhesion. We conclude that GPVI-Fc added on top of single or dual antiplatelet therapy with ASA and/or a P2Y antagonist is likely to improve anti-atherothrombotic protection without increasing bleeding risk. In contrast, the strong inhibition of platelet adhesion by GPVI-Fc in combination with GPIIb/IIIa inhibitors could be harmful.
BackgroundGPVI (Glycoprotein VI) is the essential platelet collagen receptor in atherothrombosis. Dimeric GPVI‐Fc (Revacept) binds to GPVI binding sites on plaque collagen. As expected, it did not increase bleeding in clinical studies. GPVI‐Fc is a potent inhibitor of atherosclerotic plaque‐induced platelet aggregation at high shear flow, but its inhibition at low shear flow is limited. We sought to increase the platelet inhibitory potential by fusing GPVI‐Fc to the ectonucleotidase CD39 (fusion protein GPVI‐CD39), which inhibits local ADP accumulation at vascular plaques, and thus to create a lesion‐directed dual antiplatelet therapy that is expected to lack systemic bleeding risks.Methods and Results GPVI‐CD39 effectively stimulated local ADP degradation and, compared with GPVI‐Fc alone, led to significantly increased inhibition of ADP‐, collagen‐, and human plaque–induced platelet aggregation in Multiplate aggregometry and plaque‐induced platelet thrombus formation under arterial flow conditions. GPVI‐CD39 did not increase bleeding time in an in vitro assay simulating primary hemostasis. In a mouse model of ferric chloride–induced arterial thrombosis, GPVI‐CD39 effectively delayed vascular thrombosis but did not increase tail bleeding time in vivo.ConclusionsGPVI‐CD39 is a novel approach to increase local antithrombotic activity at sites of atherosclerotic plaque rupture or injury. It enhances GPVI‐Fc–mediated platelet inhibition and presents a potentially effective and safe molecule for the treatment of acute atherothrombotic events, with a favorable risk–benefit ratio.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.