Peroxodicarbonates are of substantial interest as potentially powerful and sustainable oxidizers but have so far been accessible only in low concentrations with unsatisfactory energy efficiency. Concentrated (> 0.9 mol L À 1 ) peroxodicarbonate solutions have now been made accessible by the electrolysis of aqueous K 2 CO 3 / Na 2 CO 3 /KHCO 3 solutions at high current density of 3.33 A cm À 2 in an efficiently cooled circular flow reactor equipped with a boron-doped diamond anode and a stainless-steel cathode. Their synthetic potential as platform oxidizers was clearly demonstrated in transformations including sulfoxidation, N-oxidation, and epoxidation.
Ylide-functionalized phosphine (YPhos) ligands allow the palladium-catalyzed α-arylation of alkyl ketones with aryl chlorides with record setting activity. Using a cyclohexylsubstituted YPhos ligand, a wide range of challenging ketone substrates was efficiently and selectively monoarylated under mild conditions. A newly designed YPhos ligand bearing tert-butyl groups on the coordinating phosphorus atom is already active at room temperature. The synthetic potential was demonstrated by gram-scale reactions and the succinct synthesis of εcaprolactone derivatives.
The coupling of aryl chlorides with Reformatsky reagents is a desirable strategy for the construction of α‐aryl esters but has so far been substantially limited in the substrate scope due to many challenges posed by various possible side reactions. This limitation has now been overcome by the tailoring of ylide‐functionalized phosphines to fit the requirements of Negishi couplings. Record‐setting activities were achieved in palladium‐catalyzed arylations of organozinc reagents with aryl electrophiles using a cyclohexyl‐YPhos ligand bearing an ortho‐tolyl‐substituent in the backbone. This highly electron‐rich, bulky ligand enables the use of aryl chlorides in room temperature couplings of Reformatsky reagents. The reaction scope covers diversely functionalized arylacetic and arylpropionic acid derivatives. Aryl bromides and chlorides can be converted selectively over triflate electrophiles, which permits consecutive coupling strategies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.