Human activities have more than doubled the amount of nitrogen (N) circulating in the biosphere. One major pathway of this anthropogenic N input into ecosystems has been increased regional deposition from the atmosphere. Here we show that atmospheric N deposition increased the stoichiometric ratio of N and phosphorus (P) in lakes in Norway, Sweden, and Colorado, United States, and, as a result, patterns of ecological nutrient limitation were shifted. Under low N deposition, phytoplankton growth is generally N-limited; however, in high-N deposition lakes, phytoplankton growth is consistently P-limited. Continued anthropogenic amplification of the global N cycle will further alter ecological processes, such as biogeochemical cycling, trophic dynamics, and biological diversity, in the world's lakes, even in lakes far from direct human disturbance.
The regulation of surface water pCO2 was studied in a set of 33 unproductive boreal lakes of different humic content, situated along a latitudinal gradient (57°N to 64°N) in Sweden. The lakes were sampled four times during one year, and analyzed on a wide variety of water chemistry parameters. With only one exception, all lakes were supersaturated with CO2 with respect to the atmosphere at all sampling occasions. pCO2 was closely related to the DOC concentration in lakes, which in turn was mainly regulated by catchment characteristics. This pattern was similar along the latitudinal gradient and at different seasons of the year, indicating that it is valid for a variety of climatic conditions within the boreal forest zone. We suggest that landscape characteristics determine the accumulation and subsequent supply of allochthonous organic matter from boreal catchments to lakes, which in turn results in boreal lakes becoming net sources of atmospheric CO2.
We calculated the carbon loss (mineralization plus sedimentation) and net CO2 escape to the atmosphere for 79 536 lakes and total running water in 21 major Scandinavian catchments (size range 437–48 263 km2). Between 30% and 80% of the total organic carbon that entered the freshwater ecosystems was lost in lakes. Mineralization in lakes and subsequent CO2 emission to the atmosphere was by far the most important carbon loss process. The withdrawal capacity of lakes on the catchment scale was closely correlated to the mean residence time of surface water in the catchment, and to some extent to the annual mean temperature represented by latitude. This result implies that variation of the hydrology can be a more important determinant of CO2 emission from lakes than temperature fluctuations. Mineralization of terrestrially derived organic carbon in lakes is an important regulator of organic carbon export to the sea and may affect the net exchange of CO2 between the atmosphere and the boreal landscape.
Dissolved organic carbon (DOC) concentrations in lakes are changing globally, but little is known about potential ecosystem impacts.We evaluated the relationship between DOC and whole‐lake primary production in arctic and boreal lakes. Both light extinction (inhibits primary production) and nutrient availability (stimulates primary production) are positively and nonlinearly related to DOC concentration. These nonlinearities create a threshold DOC concentration (4.8 mg L−1), below which the DOC‐primary production relationship is positive, and above which the relationship is negative. DOC concentration varies maximally between regions, creating a unimodal relationship between primary production and DOC that emerges at broader scales because arctic lakes largely fall below the threshold DOC concentration, but boreal lakes fall above it. Our analysis suggests that the impact of DOC trends on lake primary production will vary across lakes and regions as a result of contrasting baseline conditions relative to the DOC threshold.
We compiled chemical data and phytoplankton biomass (PB) data (chlorophyll a) from unproductive lakes in 42 different regions in Europe and North America, and compared these data to inorganic nitrogen (N) deposition over these regions. We demonstrate that increased deposition of inorganic N over large areas of Europe and North America has caused elevated concentrations of inorganic N in lakes. In addition, the unproductive lakes in high N deposition areas had clearly higher PB relative to the total phosphorus (P) concentrations illustrating that the elevated inorganic N concentrations has resulted in eutrophication and increased biomass of phytoplankton. The eutrophication caused by inorganic N deposition indicates that PB yield in a majority of lakes in the northern hemisphere is (was) limited by N in their natural state. We, therefore, suggest that P limitation largely concerns lakes where the balance between N and P has been changed because of increased anthropogenic input of N.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.