Peptide nucleic acids (PNAs) are polyamide oligomers that can strand invade duplex DNA, causing displacement of one DNA strand and formation of a D-loop. Binding of either a T10 PNA or a mixed sequence 15-mer PNA to the transcribed strand of a G-free transcription cassette caused 90 to 100 percent site-specific termination of pol II transcription elongation. When a T10 PNA was bound on the nontranscribed strand, site-specific inhibition never exceeded 50 percent. Binding of PNAs to RNA resulted in site-specific termination of both reverse transcription and in vitro translation, precisely at the position of the PNA.RNA heteroduplex. Nuclear microinjection of cells constitutively expressing SV40 large T antigen (T Ag) with either a 15-mer or 20-mer PNA targeted to the T Ag messenger RNA suppressed T Ag expression. This effect was specific in that there was no reduction in beta-galactosidase expression from a coinjected expression vector and no inhibition of T Ag expression after microinjection of a 10-mer PNA.
The antisense activity and gene specificity of two classes of oligonucleotides (ONs) were directly compared in a highly controlled assay. One class of ONs has been proposed to act by targeting the degradation of specific RNAs through an RNase H-mediated mechanism and consists of C-5 propynyl pyrimidine phosphorothioate ONs (propyne-S-ON). The second class of antisense agents has been proposed to function by sterically blocking target RNA formation, transport or translation and includes sugar modified (2'-O-allyl) ONs and peptide nucleic acids (PNAs). Using a CV-1 cell based microinjection assay, we targeted antisense agents representing both classes to various cloned sequences localized within the SV40 large T antigen RNA. We determined the propyne-S-ON was the most potent and gene-specific agent of the two classes which likely reflected its ability to allow RNase H cleavage of its target. The PNA oligomer inhibited T Ag expression via an antisense mechanism, but was less effective than the propyne-S-ON; the lack of potency may have been due in part to the PNAs slow kinetics of RNA association. Interestingly, unlike the 2'-O-allyl ON, the antisense activity of the PNA was not restricted to the 5' untranslated region of the T Ag RNA. Based on these findings we conclude that PNAs could be effective antisense agents with additional chemical modification that will lead to more rapid association with their RNA target.
Cluster Differentiation 90 (CD90) is a cell surface glycoprotein originally identified on mouse thymocytes. Although CD90 has been identified on a variety of stem cells and at varying levels in non-lymphoid tissues such as on fibroblasts, brain cells, and activated endothelial cells, the knowledge about the levels of CD90 expression on different cell types, including human primary cells, is limited. The goal of this study was to identify CD90 as a human primary cell biomarker and to develop an efficient and reliable method for eliminating unwanted or contaminating fibroblasts from human primary cell cultures suitable for research pursuant to cell based therapy technologies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.