Myxococcus xanthus is a Gram-negative bacterium with a complex life cycle that includes vegetative swarming and fruiting-body formation. Social (S)-motility (coordinated movement of large cell groups) requires both type IV pili and fibrils (extracellular matrix material consisting of polysaccharides and protein). Little is known about the role of this extracellular matrix, or fibril material, in pilus-dependent motility. In this study, mutants lacking fibril material and, therefore, S-motility were found to be hyperpiliated. We demonstrated that addition of fibril material resulted in pilus retraction and rescued this phenotype. The fibril material was further examined to determine the component(s) that were responsible for triggering pilus retraction. Protein-free fibril material was found to be highly active in correcting hyperpiliation. However, the amine sugars present in hydrolyzed fibril material, e.g., glucosamine and N-acetylglucosamine (GlcNAc) had no effect on fibril ؊ mutants, but, interestingly, cause hyperpiliation in wildtype cells. In contrast, chitin, a natural GlcNAc polymer, was found to restore pilus retraction in hyperpiliated mutants, indicating that a polysaccharide containing amine sugars is likely required for pilus retraction. These data suggest that the interaction of type IV pili with amine-containing polysaccharides on cell and slime-trail surfaces may trigger pilus retraction, resulting in S-motility and slime-trailing behaviors.gliding motility ͉ type IV pilus ͉ microbial development ͉ biofilm
Summary Social (S)-motility inMyxococcus xanthus is a flagellum-independent gliding motility system that allows bacteria to move in groups on solid surfaces. S-motility has been shown to require type IV pili (TFP), exopolysaccharide (EPS; a component of fibrils) and lipopolysaccharide (LPS). Previously, information concerning EPS biogenesis in M. xanthus was lacking. In this study, we screened 5000 randomly mutagenized colonies for defects in S-motility and EPS and identified two genetic regions essential for EPS biogenesis: the EPS synthesis ( eps ) region and the EPS -associated ( eas ) region. Mutants with insertions in the eps and eas regions were defective in Smotility and fruiting body formation. These mutants failed to bind the dye calcofluor white, indicating that they lacked EPS; however, they retained normal TFP and LPS. Analysis of the eps locus showed several open reading frames (ORFs) that encode homologues to glycosyltransferases, glucanases and EPS transporters as well as regulatory proteins; the eas locus contains two ORFs: one exhibits homology to hypothetical proteins with a conserved domain of unknown function and the other displays no apparent homology to other proteins in the database. Further genetic mutagenesis analysis indicates that the whole eps region is involved in the biosynthesis of fibrils and fibril EPS. The operon at the proximal end of the eps region was analysed by generating in-frame deletion mutations. These mutants showed varying degrees of defects in the bacterium's ability to produce EPS or perform EPS-related functions, confirming the involvement of these genes in M. xanthus EPS biogenesis.
Myxococcus xanthus is a gliding bacterium that possesses two motility systems, the adventurous (A-motility) and social (S-motility) systems. A-motility is used for individual cell gliding, while S-motility is used for gliding in multicellular groups. Video microscopy studies showed that nla24 cells are non-motile on agar surfaces, suggesting that the nla24 gene product is absolutely required for both A-motility and S-motility under these assay conditions. S-motility requires functional type IV pili, wild-type LPS O-antigen, and an extracellular matrix of exopolysaccharide (EPS) and protein called fibrils. The results of expression studies and tethering assays indicate that the nla24 mutant has functional type IV pili. The nla24 mutant also produces wild-type LPS. However, several lines of evidence suggest that the nla24 mutant is defective for production of the EPS portion of the fibril matrix. The nla24 mutant is also defective for transcription of two genes (aglU and cglB) known to be required for A-motility, which is consistent with the idea that nla24 cells are defective for A-motility. Based on these findings, it is proposed that the putative transcriptional activator Nla24 regulates a subset of genes that are important for A-motility and S-motility in M. xanthus.
Myxococcus xanthus is a motile soil bacterium with complex social behaviors. Upon starvation, a developmental program is initiated that results in cellular aggregation and fruiting body formation. This process requires the exopolysaccharide (EPS) component of the extracellular matrix. With prolonged starvation, a part of the cells within a fruiting body die, while the other cells differentiate into spores. Extensive genetic and biochemical information has been generated that elucidates this interesting developmental process. Little is known, however, about the detailed three-dimensional structural features of native fruiting bodies or the EPS and distribution of live/dead cells (spores) within these structures. In this study, changes in the three-dimensional architecture of fruiting bodies and the distribution of the extracellular matrix within the fruiting bodies during the developmental process were investigated using a gfp-expressing M. xanthus strain and carbohydrate-specific lectins or monoclonal antibodies in combination with confocal laser scanning microscopy. The extracellular matrix was found to form a scaffold within the fruiting body structure. Furthermore, using a bacterial viability staining assay, the distribution of live/dead cells within fruiting bodies was examined at different times. The majority of live cells were found to localize at the outer layer of a mature fruiting body, with dead cells underneath.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.