Constructing explanations of complex phenomena is an important part of doing science and it is also an important component of learning science. Students need opportunities to make claims based on available evidence and then use science concepts to justify why evidence supports the claim. But what happens when new evidence emerges for the same phenomenon? The “claim” portion of the claim, evidence, and reasoning explanation framework is viewed as the most accessible to students. When new evidence suggests that students adjust their current thinking however, do students incorporate this new information and modify their claims? This research utilized a time series research design to explore how students modify their claim over four iterations of one explanation, termed an evolving explanation. As new data were collected and analyzed to provide additional evidence, students needed to evaluate their current claim to see if it took into account all available evidence. This research explores that process including the supports that the teacher provided and the challenges that students faced in developing one claim, over time. The findings indicate that many students face challenges adjusting their claims when new, conflicting evidence emerges, even with class discussion, teacher feedback, and written scaffolds. Several possible reasons exist to account for this challenge. Students may (1) ignore new evidence, (2) find “undoing” their initial idea too cognitively demanding, or (3) simply not have any similar experience from which to build. Providing students with experiences of writing evolving explanations reflects what scientists do, while simultaneously preparing students to become more scientifically proficient.
IMPORTANCE Waldenström macroglobulinemia (WM), an IgM-associated lymphoplasmacytic lymphoma, has witnessed several practice-altering advances in recent years. With availability of a wider array of therapies, the management strategies have become increasingly complex. Our multidisciplinary team appraised studies published or presented up to December 2015 to provide consensus recommendations for a risk-adapted approach to WM, using a grading system. OBSERVATIONS Waldenström macroglobulinemia remains a rare, incurable cancer, with a heterogeneous disease course. The major classes of effective agents in WM include monoclonal antibodies, alkylating agents, purine analogs, proteasome inhibitors, immunomodulatory drugs, and mammalian target of rapamycin inhibitors. However, the highest-quality evidence from rigorously conducted randomized clinical trials remains scant. CONCLUSIONS AND RELEVANCE Recognizing the paucity of data, we advocate participation in clinical trials, if available, at every stage of WM. Specific indications exist for initiation of therapy. Outside clinical trials, based on the synthesis of available evidence, we recommend bendamustine-rituximab as primary therapy for bulky disease, profound hematologic compromise, or constitutional symptoms attributable to WM. Dexamethasone-rituximab-cyclophosphamide is an alternative, particularly for nonbulky WM. Routine rituximab maintenance should be avoided. Plasma exchange should be promptly initiated before cytoreduction for hyperviscosity-related symptoms. Stem cell harvest for future use may be considered in first remission for patients 70 years or younger who are potential candidates for autologous stem cell transplantation. At relapse, retreatment with the original therapy is reasonable in patients with prior durable responses (time to next therapy≥3 years) and good tolerability to previous regimen. Ibrutinib is efficacious in patients with relapsed or refractory disease harboring MYD88 L265P mutation. In the absence of neuropathy, a bortezomib-rituximab–based option is reasonable for relapsed or refractory disease. In select patients with chemosensitive disease, autologous stem cell transplantation should be considered at first or second relapse. Everolimus and purine analogs are suitable options for refractory or multiply relapsed WM. Our recommendations are periodically updated as new, clinically relevant information emerges.
We explore how students developed an integrated understanding of scientific ideas and how they applied their understandings in new situations. We examine the incremental development of 7th grade students’ scientific ideas across four iterations of a scientific explanation related to a freshwater system. We demonstrate that knowing how to make use of scientific ideas to explain phenomena needs to be learned just as developing integrated understanding of scientific ideas needs to be learned. Students participated in an open-ended, long-term project-based learning unit, constructing one explanation over time to address, “How healthy is our stream for freshwater organisms and how do our actions on land potentially impact the water quality of the stream?” The explanation developed over several weeks as new data were collected and analyzed. Students discussed evidence by revisiting scientific ideas and including new scientific ideas. This research investigates two questions: (1) As students engage in writing a scientific explanation over time, to what extent do they develop integrated understanding of appropriate scientific ideas? and (2) When writing about new evidence, do these earlier experiences of writing explanations enable students to make use of new scientific ideas in more sophisticated ways? In other words, do earlier experiences allow students to know how to make use of their ideas in these new situations? The results indicated statistically significant effects. Through various iterations of the explanation students included richer discussion using appropriate scientific ideas. Students were also able to make better use of new knowledge in new situations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.